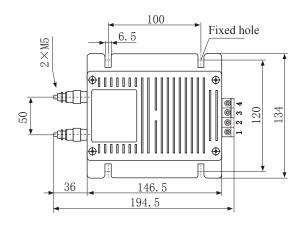
Hall voltage sensor

Model: MTVA601

Terminal output, sub-plate indtallation; Wrong connection will make the sensor bad. When measuring DC voltage, pay attention to + HT-HT wiring, which has a linear relation with the primary detection voltage. The output signal can be directly entered into the automatic control equipment or PLC port.

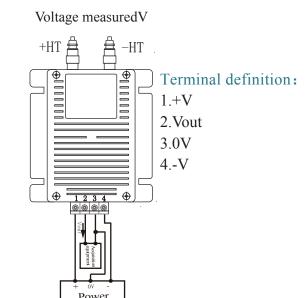
Technical Index:


Flame resistance: UL94-V0

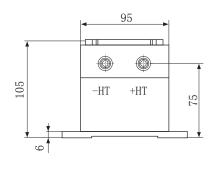
Working temperature: $-10^{\circ}\text{C} \sim +70^{\circ}\text{C}$ Storage temperature: $-25^{\circ}\text{C} \sim +70^{\circ}\text{C}$ Dielectric strength: 9KV 50Hz 1min

Electrical parameters:

V _{PN}	Rated input	± 1000	± 2000	±3000	± 4000	V
$V_{_{\mathrm{PM}}}$	Input measured range	±1500	±3000	±4500	± 6000	V
Vout	Rated output	±5				V
X	Accuracy	1				%
$\epsilon_{_L}$	Linearity	1				%
V _C	Supply voltage(±5%)	$\pm 12/\pm 15$				V
I_c	Current consumption	≤±15				mA+Is
R_L	Load impedance	>10K				Ω
V _{OE}	Zero offset TA=25°C	≤±30				m V
f	Work frequency	DC~50K				Hz
Tr	Response time	30				μs
N.W	Weight	2				kg


Dimensions (in mm):

Top View



Connection diagram:

- ①Choose the auxiliary power supply with small ripple ($\leq 10 \text{mV}$)
- ②Switch on auxiliary power
- 3 The auxiliary power is connected to the sensor
- 4 The sensor detects the primary current

Side view