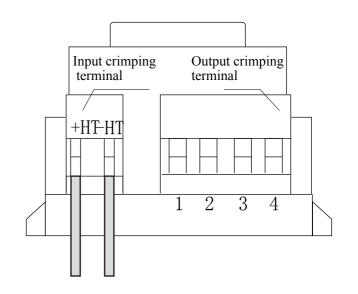


Hall voltage sensor

Sub-plate installation, Crimping terminal output. Detect DC, AC and pulse current, High insulation between primary side and the vice side circuit.


Top view

Terminal view

Bottom view

Product features

- •Low power consumption
- Good linearity
- No insertion loss
- Fast response time
- Good anti-interference ability

High side after wiring
Terminal proposal seal processing

Product application

- Railway
- Metallurgical
- •Welding machine
- Robot
- Motor
- •Inverter power supply
- Variable frequency governor
- •Uninterrupted power supply and communication power supply

$Electrical\ parameters:\ (\ The\ following\ parameters\ are\ typical\ values\ and\ actual\ values\ will\ be\ subject\ to\ product\ testing\)$

Remarks:

$I_{_{\mathrm{PN}}}$	Rated input	±50V	±100V	±200V	±300V	±400V	±500V	Standard input
Ipm	Input measurement range	±70V	±150V	±300V	±450V	±600V	±750 V	Default is 1.5 times of rated input
Vout	Rated output	$2.5 \text{V} \pm 0.625 \text{V}$						Standard output
X	Accuracy	1 %						$I = I_{PN}$
εL	Linearity	0.2%						$I=0^{\sim}\pm I_{PN}$
Vс	Supply voltage	+ 5 V						Supply voltage range±5%
Ιc	Current consumption	$\leq 20\mathrm{mA} + \mathrm{Is}$						Reference will be subject to the measured
R1	Load impedance	≥10KΩ						Collection port impedance while lower voltage affect accuracy
Voe	Zero offset voltage	$\leq \pm 30\mathrm{mV}$						TA=25°C
Tr	Response time	40 [~] 200 μ s						Reference will be subject to the measured
N.w	Weight	103g						Reference will be subject to the measured
Та	Operation temperature	-10 ~+70 °C						
Ts	Storage temperature	-25~+70°C						
Bw	Band width	e e						Factory test according to DC
Vd	Delectric strength	3.5KV 50Hz 1min						

Factory commissioning:

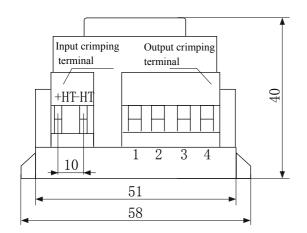
Calculation formula: 2.5V±0.625V 0V datum

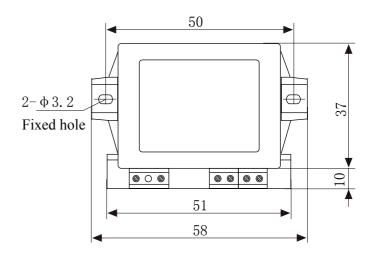
- 1. Debugging with 0V as the reference point(acquiescence) Forward direction: 2.5+ (I/I_{PN}) *0.625
- 2. Debug with Vref as the reference point(optional)
- Reverse direction: $2.5-(I/I_{PN})*0.625$

Instruction for use:

- 1. Correct wiring as indicated
- 2. Full scale measurement, response time and following the speed for the best
- 3. Faulty wiring can lead to product damage and output uncertainty

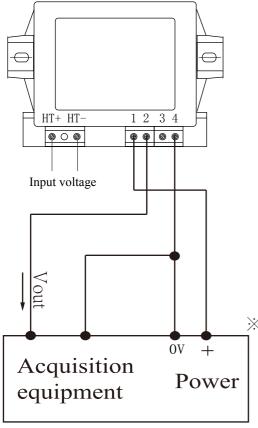
Safe operation:


- *Please read this specification carefully before use.
- *When you need to move the product, please be sure to disconnect the power and all the connected cables.
- *If found shell, devices attached to the fixed parts, wire, or have any damaged, please immediately deal with hidden dangers.
- *If there is any doubt about the safe operation of the equipment, the equipment and the corresponding accessories should be closed immediately, and the fastest time for troubleshooting.


Proclamations:

As our products are constantly being improved and updated, we reserve the right to modify the content of this specification at any time without prior notice.

Dimensions(in $mm\pm0.5$):



Side view

Top view

Wiring diagram:

Terminal definition:

1: +V

2: Vout

3: Vref

4: 0V

X Detection:

- ①Choose the auxiliary power supply with small ripple ($\leq 10 mV$)
- ②Switch on auxiliary power
- 3 The auxiliary power is connected to the sensor
- 4 The sensor detects the primary current