

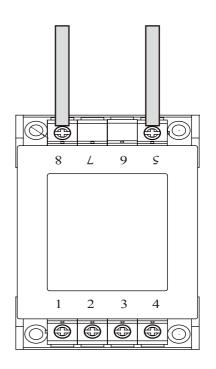
Hall voltage sensor

Sub-plate installation, Crimping terminal output. Detect DC, AC and pulse current, High insulation between primary side and the vice side circuit.

Side view

zero gain

Bottom view


Product features

- •Low power consumption
- Good linearity
- No insertion loss
- Fast response time
- Good anti-interference ability

Product application

- Railway
- Metallurgical
- ·Welding machine
- Robot
- Motor
- •Inverter power supply
- Variable frequency governor
- Uninterrupted power supply and communication power supply

High side after wiring Terminal proposal seal processing

Electrical parameters: (The following parameters are typical values and actual values will be subject to product testing)

Remarks:

I_{PN}	Rated input	±500V	±700V	±800V	±900V	±1000V	Standard input
Ipm	Input measurement range	$\pm 750 V$	±1050V	±1200V	±1300V	±1500V	Default is 1.5 times of rated input
Vout	Rated output	$2.5 \pm 0.625 V$					Standard output
X	Accuracy	1%					$I = I_{PN}$
εL	Linearity	0.2%					$I=0^{\sim} \pm I_{PN}$
Vс	Supply voltage	+5 V					Supply voltage range±5%
Ιc	Current consumption	≤20mA+Is					Reference will be subject to the measured
R1	Load impedance	≥10KΩ					Collection port impedance while lower voltage affect accuracy
Voe	Zero offset voltage	\leq \pm 30 m V					TA=25°C
Tr	Response time	40~200 μ s					Reference will be subject to the measured
N.w	Weight	490g					Reference will be subject to the measured
Та	Operation temperature	-10 \sim $+70$ $^{\circ}$ C					
Ts	Storage temperature	-25~+70°C					
Bw	Band width	-					Factory test according to DC
Vd	Delectric strength	3.5KV 50Hz 1min					

Factory commissioning:

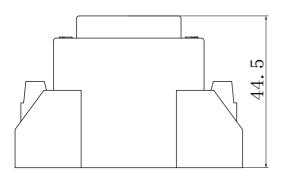
Calculation formula: 2.5V±0.625V 0V datum

- 1. Debugging with 0V as the reference point(acquiescence) Forward direction: 2.5+ (I/I_{PN}) *0.625
- 2. Debug with Vref as the reference point(optional) Reverse direction: $2.5-(1/I_{pN})$ *0.625

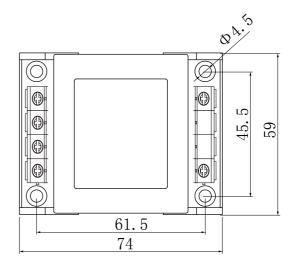
Instruction for use:

- 1. Correct wiring as indicated
- 2.Full scale measurement, response time and following the speed for the best
- 3. Faulty wiring can lead to product damage and output uncertainty

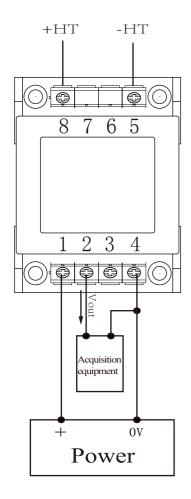
Safe operation:


- *Please read this specification carefully before use.
- *When you need to move the product, please be sure to disconnect the power and all the connected cables.
- *If found shell, devices attached to the fixed parts, wire, or have any damaged, please immediately deal with hidden dangers.
- *If there is any doubt about the safe operation of the equipment, the equipment and the corresponding accessories should be closed immediately, and the fastest time for troubleshooting.

Proclamations:


As our products are constantly being improved and updated, we reserve the right to modify the content of this specification at any time without prior notice.

Dimensions(in $mm\pm0.5$):



Side view

Top view

Wiring diagram:

Terminal definition:

1: +V

2: Vout

3: Vref

4: 0V

5: -HT 6: Air terminal

8: +HT 7: Air terminal

X Detection:

- ①Choose the auxiliary power supply with small ripple ($\leq 10 \text{mV}$)
- 2 Switch on auxiliary power
- 3 The auxiliary power is connected to the sensor
- 4 The sensor detects the primary current