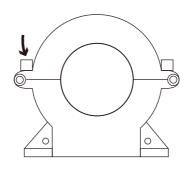


Hall split core current sensor

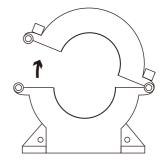
Open loop split core type, Sub-plate installation, terminal output. Detect DC, AC and pulse current, High insulation between primary side and the vice side circuit.

Front view

Back view


Fixed hole view

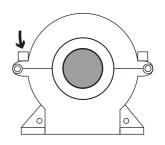
Opening view


Installation diagram

Product features

- ·Light weight
- •Low power consumption
- Good linearity
- No insertion loss
- Fast response time
- Good anti-interference ability

1.Loosen the screw



2.Open up

Product application

- Railway
- Metallurgical
- •Welding machine
- Robot
- Motor
- •Inverter power supply
- Variable frequency governor

4. Tighten the screws

$Electrical\ parameters:\ (\ \ \ The\ following\ parameters\ are\ typical\ values\ and\ actual\ values\ will\ be\ subject\ to\ product\ testing\)$

Remarks:

Ip	Rated input	±200A	±300A	±500A	±600A	±800A	±1000A	Standard input
Ipm	Input measurement range	±240A	$\pm 360 \mathrm{A}$	±600 A	±720A	±960A	±1200A	Default is 1.2 times of rated input
Vout	-	$2.5V \pm 0.625V$						Standard output
X	Accuracy	1 %						I = I p
εL	Linearity	1 %						$I=0^{\sim} \pm Ip$
Vс	Supply voltage	+ 5 V						Supply voltage range±5%
Ιc	Current consumption	≤16mA						Reference will be subject to the measured
R1	Load impedance	≥10KΩ						Collection port impedance while lower voltage affect accuracy
Voe	Zero offset voltage	$\leq \pm 15 \mathrm{mV}$						TA=25°C
Tr	Response time	≤5 μ s						Reference will be subject to the measured
N.w	Weight	409g						Reference will be subject to the measured
Ta	Operation temperature	-10 \sim $+70$ $^{\circ}$ C						
Ts	Storage temperature	$-25\sim$ $+70^{\circ}\mathrm{C}$						
Bw	Band width	$\mathtt{DC}^{\sim}\mathtt{10KHz}$						Factory test according to DC
Vd	Delectric strength	3KV 50Hz 1min						

Factory commissioning:

Calculation formula: 2.5V±0.625V 0V datum

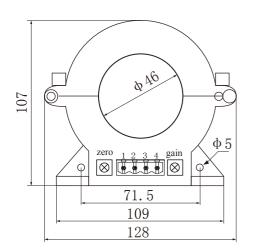
- 1. Debugging with 0V as the reference point(acquiescence) Forward direction: 2.5 + (I/IP) *0.625
- 2. Debug with Vref as the reference point(optional)

Reverse direction: 2.5-(I/IP)*0.625

Instructions for use:

- 1. According to the connection mode of correct connection
- 2. The direction shown by the arrow is positive
- 3. With hole measurement, response time and following the speed for the best
- 4. Faulty wiring can lead to product damage and output uncertainty

Safe operation:


- *Please read this specification carefully before use.
- *When you need to move the product, please be sure to disconnect the power and all the connected cables.
- *If found shell, devices attached to the fixed parts, wire, or have any damaged, please immediately deal with hidden dangers.
- *If there is any doubt about the safe operation of the equipment, the equipment and the corresponding accessories should be closed immediately, and the fastest time for troubleshooting.

Proclamations:

As our products are constantly being improved and updated, we reserve the right to modify the content of this specification at any time without prior notice.

Dimensions(in mm±0.5):

Front view

Current direction

Print surface **←** Epoxy surface

Fixed hole

80
95

Side view

Bottom view

Connector Illustration

Crimping terminal fast plug 2EDG-5.08-4p spacing 5.08mm

Wiring diagram (based on 0 V)

Terminal definition:

1: +5V

2: 0V

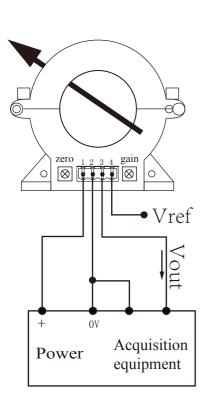
3: Vout

4: Vref (Can be suspended, not grounded)

Potentiometer definition:

Left: zero

right: gain


* Detection:

①Choose the auxiliary power supply with small ripple ($\leq 10 \text{mV}$)

2 Switch on auxiliary power

3 The auxiliary power is connected to the sensor

4 The sensor detects the primary current

