

# Hall split core current sensor

Open loop split core type, Sub-plate installation, terminal output. Detect DC, AC and pulse current, High insulation between primary side and the vice side circuit.



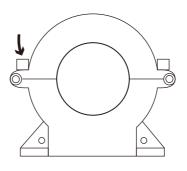




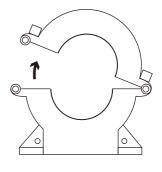


Front view

Back view


Fixed hole view

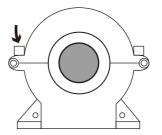
Opening view


## Product features

- •Light weight
- •Low power consumption
- Good linearity
- No insertion loss
- Fast response time
- Good anti-interference ability

# Installation diagram




1.Loosen the screw



2.Open up

# Product application

- Railway
- Metallurgical
- •Welding machine
- Robot
- Motor
- •Inverter power supply
- Variable frequency governor
- 3.In the lead



4. Tighten the screws

•Uninterrupted power supply and communication power supply



# $Electrical\ parameters: (\ The\ following\ parameters\ are\ typical\ values\ and\ actual\ values\ will\ be\ subject\ to\ product\ testing\ )$

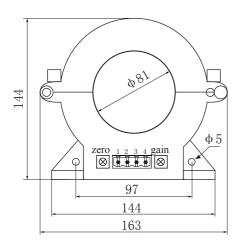
### Remarks:

| $I_{PN}$ | Rated input             | ±500A ±                         | ±600A | ±800A              | ±1000A | ±1200A | ±1500A                | Standard input                                                |
|----------|-------------------------|---------------------------------|-------|--------------------|--------|--------|-----------------------|---------------------------------------------------------------|
| Ipm      | Input measurement range | ±600A ±                         | ±720A | $\pm 960 \text{A}$ | ±1200A | ±1440A | $\pm 1800 \mathrm{A}$ | Default is 1.2 times of rated input                           |
| Vout     | Rated output            | $\pm4\mathrm{V}$                |       |                    |        |        |                       | Standard output                                               |
| X        | Accuracy                | 1 %                             |       |                    |        |        |                       | $I = I_{PN}$                                                  |
| εL       | Linearity               | 1 %                             |       |                    |        |        |                       | $I=0^{\sim} \pm I_{PN}$                                       |
| Vс       | Supply voltage          | $\pm$ 12V/ $\pm$ 15V            |       |                    |        |        |                       | One or the other Supply voltage range±5%                      |
| Ιc       | Current consumption     | $\leqslant$ $\pm$ 16mA          |       |                    |        |        |                       | Reference will be subject to the measured                     |
| R1       | Load impedance          | $\geqslant$ 10K $\Omega$        |       |                    |        |        |                       | Collection port impedance while lower voltage affect accuracy |
| Voe      | Zero offset voltage     | $\leq$ $\pm$ 15 m V             |       |                    |        |        |                       | TA=25°C                                                       |
| Tr       | Response time           | ≤5 μ s                          |       |                    |        |        |                       | Reference will be subject to the measured                     |
| N.w      | Weight                  | 643g                            |       |                    |        |        |                       | Reference will be subject to the measured                     |
| Ta       | Operation temperature   | $-10$ $\sim$ $+70$ $^{\circ}$ C |       |                    |        |        |                       |                                                               |
| Ts       | Storage temperature     | -25~+70°C                       |       |                    |        |        |                       |                                                               |
| Bw       | Band width              | DC~10KHz                        |       |                    |        |        |                       | Factory test according to DC                                  |
| Vd       | Delectric strength      | 3KV 50Hz 1min                   |       |                    |        |        |                       |                                                               |

#### Instructions for use:

- 1. According to the connection mode of correct connection
- 2. The direction shown by the arrow is positive
- 3. With hole measurement, response time and following the speed for the best
- 4. Faulty wiring can lead to product damage and output uncertainty

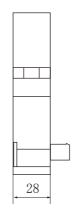
#### Safe operation:


- \*Please read this specification carefully before use.
- \*When you need to move the product, please be sure to disconnect the power and all the connected cables.
- \*If found shell, devices attached to the fixed parts, wire, or have any damaged, please immediately deal with hidden dangers.
- \*If there is any doubt about the safe operation of the equipment, the equipment and the corresponding accessories should be closed immediately, and the fastest time for troubleshooting.

#### Proclamations:

As our products are constantly being improved and updated, we reserve the right to modify the content of this specification at any time without prior notice.




## Dimensions(in mm±0.5):



Front view

#### Current direction

positive - Epoxy surface



Fixed hole

110
128

Side view

Bottom view

## Connector Illustration





## Wiring diagram:

Crimping terminal fast plug 2EDG-5.08-4p spacing 5.08 mm



1: +V

2: -V

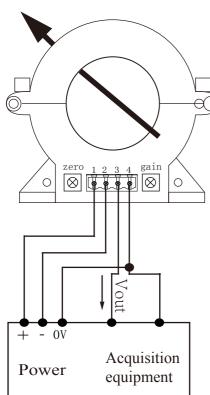
3: Vout

4: 0V

# Potentiometer definition:

Left: zero

right: gain


**X** Detection:

①Choose the auxiliary power supply with small ripple ( $\leq 10 \text{mV}$ )

②Switch on auxiliary power

③The auxiliary power is connected to the sensor

(4) The sensor detects the primary current

