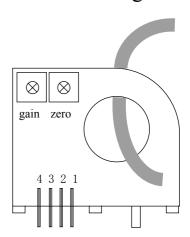


Hall open loop current sensor

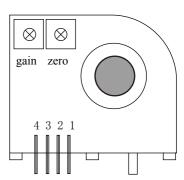
PCB mounting, Detect DC, AC and pulse current, High insulation between primary side and the vice side circuit.

Epoxy view



Bottom view

Product features


- ·Light weight
- •Low power consumption
- Good linearity
- No insertion loss
- Fast response time
- Good anti-interference ability

Installation diagram

Product application

- Railway
- Metallurgical
- Welding machine
- Robot
- Motor
- •Inverter power supply
- Variable frequency governor
- Uninterrupted power supply and communication power supply

$Electrical\ parameters: (\ The\ following\ parameters\ are\ typical\ values\ and\ actual\ values\ will\ be\ subject\ to\ product\ testing\)$

Remarks:

Ιp	Rated input	±50 A	±100A	$\pm 200 \mathrm{A}$	±300A	±400A	Standard input
Ipm	Input measurement range	$\pm75A$	±150A	$\pm 300 \mathrm{A}$	$\pm 450 \mathrm{A}$	±600 A	Default is 1.5 times of rated input
Vout	Rated output	$2.5V \pm 0.625V$					Standard output
X	Accuracy	1 %					I = I p
εL	Linearity	1 %					$I=0^{\sim} \pm Ip$
Vс	Supply voltage	+5 V					Supply voltage range±5%
Ιc	Current consumption	≤15mA					Reference will be subject to the measured
R1	Load impedance	≥10KΩ					Collection port impedance while lower voltage affect accuracy
Voe	Zero offset voltage	$\leq \pm 15 \mathrm{mV}$					TA=25°C
Tr	Response time	≤3 μ s					Reference will be subject to the measured
N.w	Weight	23g					Reference will be subject to the measured
Ta	Operation temperature	$-10\sim$ $+70$ °C					
Ts	Storage temperature	-25 ∼ $+70$ °C					
Bw	Band width	$DC^{\sim}50 \mathrm{KHz}$					Factory test according to DC
Vd	Delectric strength	2.5KV 50Hz 1min					

Factory commissioning:

Calculation formula: 2.5V±0.625V 0V datum

- 1. Debugging with 0V as the reference point(acquiescence) Forward direction: 2.5+ (I/IP) *0.625
- 2. Debug with Vref as the reference point(optional)

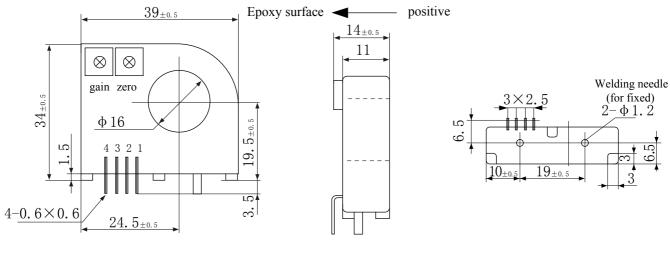
Reverse direction: 2.5-(I/IP)*0.625

Instructions for use:

- 1. According to the connection mode of correct connection
- 2. The direction shown by the arrow is positive
- 3. With hole measurement, response time and following the speed for the best
- 4. Faulty wiring can lead to product damage and output uncertainty

Safe operation:

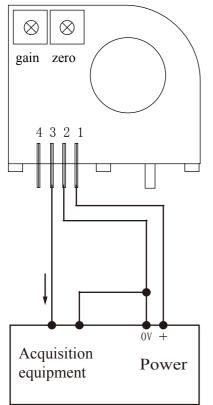
- *Please read this specification carefully before use.
- *When you need to move the product, please be sure to disconnect the power and all the connected cables.
- *If found shell, devices attached to the fixed parts, wire, or have any damaged, please immediately deal with hidden dangers.
- *If there is any doubt about the safe operation of the equipment, the equipment and the corresponding accessories should be closed immediately, and the fastest time for troubleshooting.


Proclamations:

As our products are constantly being improved and updated, we reserve the right to modify the content of this specification at any time without prior notice.

Dimensions (in $mm\pm0.5$):

Current direction



Front view

Side view

Bottom view

Wiring diagram (based on 0 V)

Pin definition:

1: +V

2: 0V

3: Vout

4: Vref (It can be suspended, not grounded)

X Detection:

- ①Choose the auxiliary power supply with small ripple ($\leq 10 \text{mV}$)
- ②Switch on auxiliary power
- ③The auxiliary power is connected to the sensor
- 4)The sensor detects the primary current