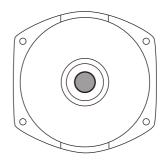


Hall open loop current sensor

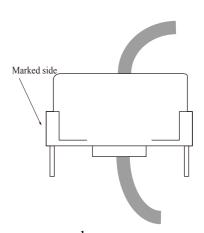
PCB mounting, Detect DC, AC and pulse current, High insulation between primary side and the vice side circuit.

Front view



Epoxy view

Product features


- ·Light weight
- •Low power consumption
- Good linearity
- •No insertion loss
- Fast response time
- •Good anti-interference ability

Installation diagram

Product application

- Railway
- Metallurgical
- Welding machine
- Robot
- Motor
- •Inverter power supply
- Variable frequency governor
- •Uninterrupted power supply and communication power supply

$Electrical\ parameters:\ (\ The\ following\ parameters\ are\ typical\ values\ and\ actual\ values\ will\ be\ subject\ to\ product\ testing\)$

Remarks:

In	Patad input	⊥ 1 0 A	± 20 \	± 20 A	± 50 V	±601	T 0 U V	Standard input
Ιp	Rated input	±10A	±20A	±30A	± 50 A	± 60 A	±80A	Standard input
Ipm	Input measurement range	± 15 A	$\pm 30 A$	$\pm 45A$	$\pm75A$	$\pm 90A$	± 100 A	Default is 1.5 times of rated input, and maximum ≤100A (saturation)
Vout	Rated output	$2.5V \pm 0.625V$						Standard output
X	Accuracy	1 %						I=IP
εL	Linearity	1%						$I=0^{\sim} \pm IP$
Vс	Supply voltage	+5 V						Supply voltage range±5%
Ιc	Current consumption	≤15mA						Reference will be subject to the measured
R1	Load impedance	≥10KΩ						Collection port impedance while lower voltage affect accuracy
Voe	Zero offset voltage	$\leq \pm 15 \mathrm{mV}$						TA=25 ℃
Tr	Response time	€5 μ s						Reference will be subject to the measured
N.w	Weight	6 g						Reference will be subject to the measured
Ta	Operation temperature	-10 ∼ $+70$ °C						
Ts	Storage temperature	-25 ∼ + 70 °C						
Bw	Band width	DC~100KHz						Factory test according to DC
Vd	Delectric strength	2.5KV 50Hz 1min						

Calculation formula: 2.5V±0.625V 0V datum

Forward direction: 2.5+ (I/IP) *0.625 Reverse direction: 2.5- (I/IP) *0.625

Instructions for use:

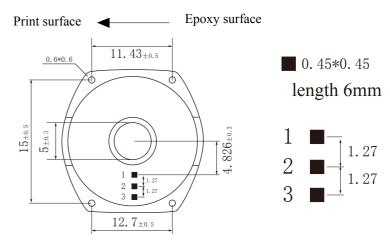
- 1. According to the connection mode of correct connection
- 2. The direction shown by the arrow is positive
- 3. With hole measurement, response time and following the speed for the best
- 4. Faulty wiring can lead to product damage and output uncertainty

Safe operation:

- *Please read this specification carefully before use.
- *When you need to move the product, please be sure to disconnect the power and all the connected cables.
- *If found shell, devices attached to the fixed parts, wire, or have any damaged, please immediately deal with hidden dangers.
- *If there is any doubt about the safe operation of the equipment, the equipment and the corresponding accessories should be closed immediately, and the fastest time for troubleshooting.

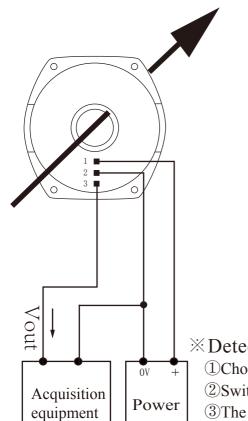
Proclamations:

As our products are constantly being improved and updated, we reserve the right to modify the content of this specification at any time without prior notice.



Dimensions(in mm±0.5):

18±0.5


Front view

Current direction

Bottom view (Epoxy surface)

Wiring diagram (based on 0 V)

Pin definition:

1: +V

2: 0V

3: Vout

X Detection:

①Choose the auxiliary power supply with small ripple ($\leq 10 \text{mV}$)

②Switch on auxiliary power

3 The auxiliary power is connected to the sensor

4 The sensor detects the primary current