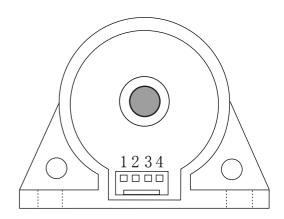


Hall closed loop current sensor

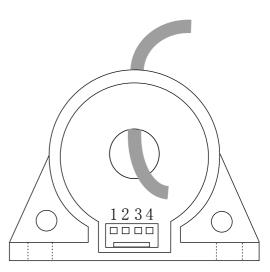
Sub-plate mount, terminal output. Detect DC, AC and pulse current, High insulation between primary side and the vice side circuit.

Front view


Epoxy view

Fixed hole view

Product features


- ·Light weight
- •Low power consumption
- Good linearity
- No insertion loss
- Fast response time
- Good anti-interference ability

Installation diagram

Product application

- Railway
- Metallurgical
- •Welding machine
- Robot
- Motor
- •Inverter power supply
- Variable frequency governor
- •Uninterrupted power supply and communication power supply

Electrical parameters: (The following parameters are typical values and actual values will be subject to product testing)

 $\pm 50A$

 $\pm 75A$

+25mA

 $\pm 50A$

 $\pm 75A$

+50 mA

0.5%

0.1%

 $\pm 12 \text{V} / \pm 15 \text{V}$

+12mA+Is

 $\leq \pm 0.15 \text{mA}$

 $\pm 100A$

 $\pm 150 A$

 ± 33.3 mA

 ± 100

 ± 150

+50m

 $\pm 20 A$

+30A

+50 mA

es	Remarks:
A	Standard input can be customized
A	The default is 1.5 times the rated input
n A	Standard output
	$I=I_{PN}$
	$I=0\sim\pm I_{PN}$
	One or the other Supply voltage range±5%
	Reference will be subject to the measured
	According to the sampling voltage Vout=Iout*R1
	TA=25°C
	Reference will be subject to the measured
	Reference will be subject to the measured

Factory test according to DC

Voe	Zero offset voltage
Tr	Response time
N.w	Weight
Ta	Operation temperature
Ts	Storage temperature
Bw	Band width
Vd	Delectric strength

Rated input

Rated output

Accuracy

Linearity

Input measurement range

Supply voltage

Current consumption

Load impedance

 I_{PN}

Ipm

Iout

X

εL

Vс

Ιc

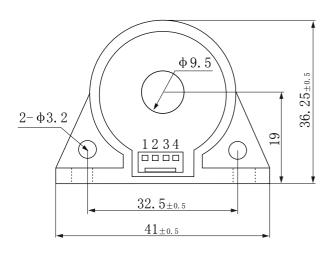
R1

	≪ 1 μ S
	34g
ıre	-25~+70°C
;	-25~+70°C
	$\mathrm{DC}^{\sim}150\mathrm{KHz}$
ı	3.5KV 50Hz 1min

Instructions for use:

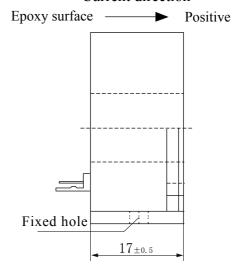
- 1. According to the connection mode of correct connection
- 2. The direction shown by the arrow is positive
- 3. With hole measurement, response time and following the speed for the best
- 4. Faulty wiring can lead to product damage and output uncertainty

Safe operation:

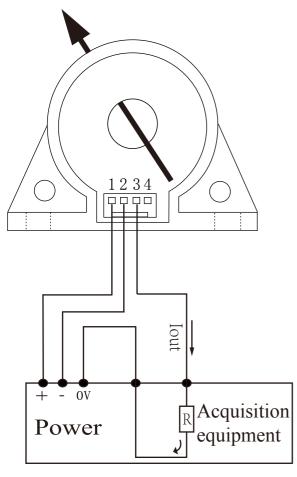

- *Please read this specification carefully before use.
- *When you need to move the product, please be sure to disconnect the power and all the connected cables.
- *If found shell, devices attached to the fixed parts, wire, or have any damaged, please immediately deal with hidden dangers.
- *If there is any doubt about the safe operation of the equipment, the equipment and the corresponding accessories should be closed immediately, and the fastest time for troubleshooting.

Proclamations:

As our products are constantly being improved and updated, we reserve the right to modify the content of this specification at any time without prior notice.



Dimensions(in mm±0.5):


Front view

Current direction

Side view

Wiring diagram (based on 0 V)

Connector Illustration:

Quick plug which spacing 2.54 mm

Terminal definition:

1: +V

2: -V

3: M

4: N.C

X Detection:

- ①Choose the auxiliary power supply with small ripple ($\leq 10 \text{mV}$)
- ②Switch on auxiliary power
- 3The auxiliary power is connected to the sensor
- 4)The sensor detects the primary current