
BIGTREETECH M4P & CB1

User Manual

Contents

Contents	2
Revision History	4
1. Brief Introduction	
1.1 Main Features	
1.1.1 CB1	
1.1.2 M4P	
1.2 Basic Parameters	6
1.3 Product Dimension	
2. Peripheral Interface	
2.1 Interface Diagram	
2.1 Pin Out	
3. Interface Instruction	9
3.1 Installing the Core Board	9
3.2 40 pin GPIO	
3.3 Type-C	10
3.4 Stepper Driver	10
3.4.1 Normal STEP/DIR(STANDALONE) Mode	10
3.4.2 UART Mode of TMC Driver	12
3.4.3 SPI Mode of TMC Driver	12
3.4.4 DIAG(Sensorless Homing) of TMC Driver	12
3.4.5 Stepper Driver Voltage Selection	
3.4.5.1 Driver independent power supply	13
3.4.5.2 Main power supply	13
3.5 BLTouch Wiring	14
3.6 EXP1+EXP2 and LCD Screen Wiring	14
3.7 RGB Wiring	15
3.8 DSI/CSI Wiring	15

	3.9 SPI Display Wiring	16
4.	Raspberry PI CM4 Setup steps	17
	4.1 Download OS Image	17
	4.2 Download and Install Raspberry Pi Imager	17
	4.3 Write OS Image	18
	4.3.1 CM4 LITE Version (Micro SD Card)	18
	4.3.2 CM4 eMMC Version(Note: eMMC version will not tun the system f Micro SD card.)	
	4.4. System Settings (CM4)	22
	4.4.1 USB 2.0 Hub Ports	22
	4.4.2 DSI1 Display Interface	22
	4.4.3 CSI1 Camera	22
5.	BIGTREETECH CB1 Setup steps	22
	5.1 Download OS Image	22
	5.2 Download and Install Raspberry Pi Imager	22
	5.3 Write OS Image	23
	5.4 WIFI Setting	25
	5.5 Install Klipper with kiauh Script	25
	5.6 Checkout Klipper Branch	27
	5.7 Fix KlipperScreen	28
6.	Configure the motherboard	29
	6.1 ssh connect to device	29
	6.2 Compile firmware	31
	6.3 Firmware update	32
	6.3.1 Update using SD Card	32
	6.3.2 Update using DFU	32
	6.4 Configure Klipper	33
-	Dresquitions	2.4

Revision History

Revision	Description	Date
01.00	1 st Draft	2022/06/01
01.01	Fix 40 pin GPIO	2022/06/20
01.02	1. More detailed CB1 dimension	2022/06/27
	2. Add wiring of M4P + expansion module	
	3. Add MCU configuration, system settings, etc	

1. Brief Introduction

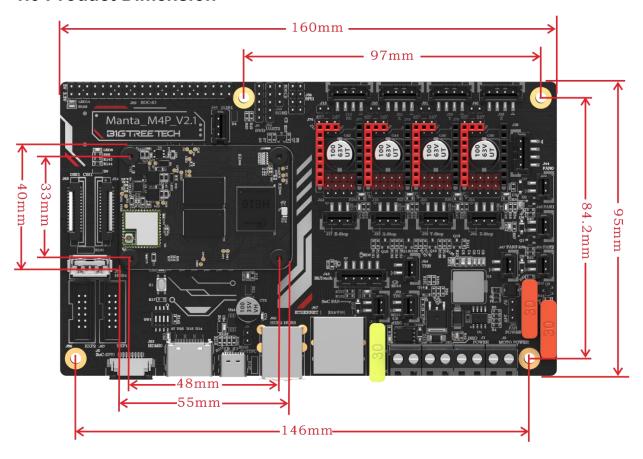
BIGTREETECH CB1 is an alternative to Raspberry Pi CM4, which is currently out of stock. BIGTREETECH M4P is a 4-axis motherboard using a CM4 BTB header, which can work with CB1 or CM4 perfectly.

1.1 Main Features

1.1.1 CB1

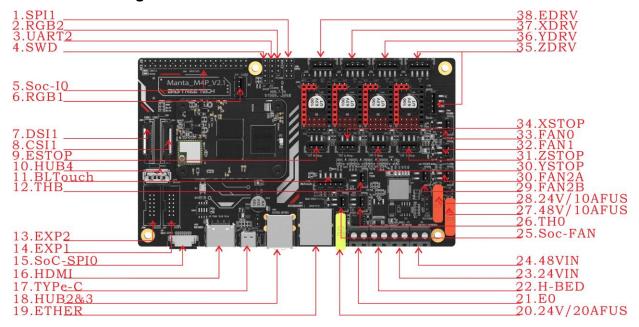
- 1. CPU: Allwinner H616, Quad-core Cortex-A53 @1.5GHz
- 2. GPU: Mali G31 MP2, support OpenGL3.2
- 3. RAM: 512MB/1GB DDR3L SDRAM
- 4. Display: HDMI2.0A interface, support 4K display
- 5. USB 2.0 port
- 6. 100M Ethernet + 100M WiFi
- 7. The same BTB header as the Raspberry Pi CM4

1.1.2 M4P

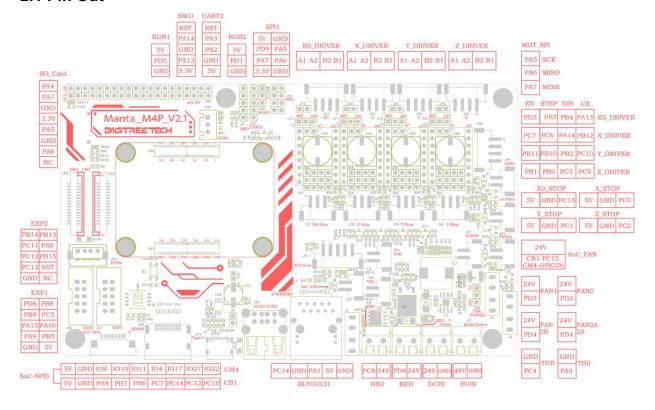

- 1. DSI1, CSI1 interface (for CM4)
- 2. Gigabit Ethernet interface (1000M for CM4, 100M for CB1)
- 3. 3 USB 2.0 ports
- 4. Equipping the ESD protection chip on the USB and Ethernet ports to prevent being broken down by the static electricity
- 5. When working with Raspberry Pi CM4, its 40pin pin header has the same function as that of Raspberry Pi(Custom IO for CB1)
- 6. Using a BTB board-to-board connection, which can be further reinforced with screws, perfectly compatible with CB1 or Raspberry Pi CM4
- 7. The MCU adopts STM32G0B0RE 32-bit ARM Cortex-M0+ @64MHz chip
- 8. The power chip adopts TPS5450-5A, which supports DC12/24V power input, the output current of the chip is up to 5A, and the peak value can reach 6A, which perfectly supports the power supply of the core board
- 9. The protection circuit of the thermistor part prevents the main control chip from burning due to leakage of the heated bed or heater cartridge

- 10. In CNC fan ports: FAN0, FAN1, and FAN2, a 24V (DCIN) or 5V power supply can be selected with a jumper cap (Note: the voltage of the three CNC fans should be the same, and cannot be set to different voltages individually)
- 11. MCU firmware can be upgraded through SD card, or through DFU with Klipper's make flash command
- 12. On-board TMC-driven SPI and UART working modes, on-board DIAG function pins, can be used by simply plugging and unplugging the jumper cap
- 13. Support filament runout detection, BLTouch, RGB lights...
- 14. Adopt replaceable fuse for easy replacement

1.2 Basic Parameters

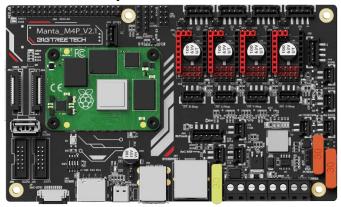

- 1. Product Size: 160 x 95mm
- 2. Installation Size: 146 x 84.2mm; 97 x 84.2mm
- 3. Core Board Installation Size: 33 x 48mm
- 4. The maximum output current of the heated bed port: 10A
- 5. The maximum output current of the heater cartridge port: 6A
- 6. Fan Port: Three for CNC Fan(24V/5V Voltage Selectable), One SoC Fan(Voltage not Selectable)
- 7. The maximum output current of the fan port:1A
- 8. Total current for heater cartridge + driver + fan: <20A
- 9. Extended Interface: BLTouch(Servos, Probe), Fil-DET, 2 * RGB
- 10. Motor Driver: Support TMC5160, TMC2209, TMC2225, TMC2226, TMC2208, TMC2130, ST820, LV8729, DRV8825, A4988...
- 11. Driver Working Mode Support: SPI, UART, STEP/DIR
- 12. Motor Drive Interface: X, Y, Z(Dual Z-axis), E0, a total of four.
- 13. Temperature Sensor Interface: 2-way 100K NTC
- 14. Display Screen: RepRapDiscount EXP-1 + EXP-2

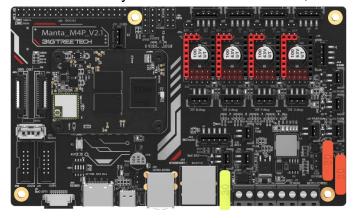
1.3 Product Dimension



2. Peripheral Interface

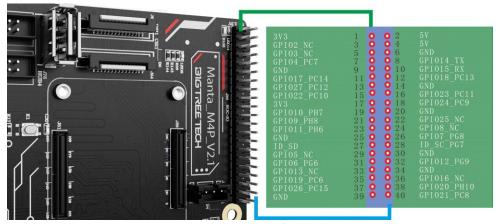
2.1 Interface Diagram


2.1 Pin Out


3. Interface Instruction

3.1 Installing the Core Board

M4P+CM4: Pay attention to the direction, as shown below.



M4P+CM4: Pay attention to the direction, as shown below.

3.2 40 pin GPIO

When working with CM4, the pin arrangement of 40 Pin GPIO is exactly the same as that of Raspberry Pi. When working with CB1, it is a custom IO arrangement, as shown in the figure below, the 'GPIO4' in front of '_' is the IO of CM4, and the latter 'PC7' is the IO of CB1.

3.3 Type-C

After the M4P is powered on, the red LED1 on the lower right side of the motherboard will light up, indicating that the power supply is normal. The J8 on the middle of the board is the power selection terminal, it needs to be short circuited only when the type-C USB is used to supply power to the motherboard or the USB is used to supply power externally. The signal of type-C is connected to the SoC, Only used when writing OS image for CM4 eMMC version.

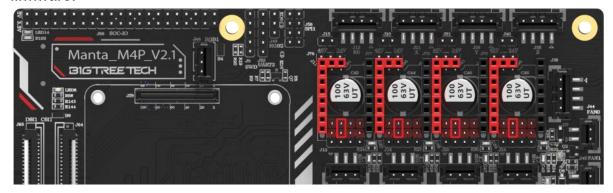
3.4 Stepper Driver

3.4.1 Normal STEP/DIR(STANDALONE) Mode

For example, A4988, DRV8825, LV8729, ST820...use the jumper cap to short MS0-MS2 according to the driver subdivision table.

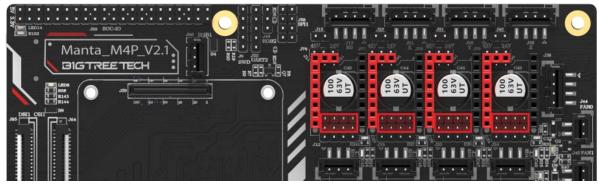
Note: If using A4988or DRV8825, RST and SLP must be shorted with jumper caps for normal operation.

Driver chips	MS1	MS2	MS3	Microsteps	Excitation Mode
A4988	L	L	L	Full Step	2 Phase
16 microstep	Н	L	L	1/2	1-2 Phase
'	L	Н	L	1/4	W1-2 Phase
max	Н	Н	L	1/8	2W1-2 Phase
35V 2A	Н	Н	Н	1/16	4W1-2 Phase
Current	$I_{TripMAX} = \frac{V_{REF}}{8 * R_{S}}$				
$R_S = 0.1\Omega$					

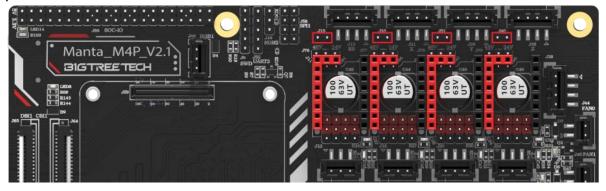

Driver chips	MODE2	MODE1	MODE0	Microsteps	Excitation Mode
	L	L	L	Full Step	2 Phase
DRV8825	L	L	Н	1/2	1-2 Phase
Maximum	L	Н	L	1/4	W1-2 Phase
	L	Н	Н	1/8	
32microsteps	Н	L	L	1/16	
8.2V-45V 2.5A at 24V T=25°C	Н	L	Н	1/32	
	Н	Н	L	1/32	
	Н	Н	Н	1/32	
Current	$I_{CHOP} = \frac{V_{(xREF)}}{F_{AB}}$				
$R_{ISENSE} = 0.1\Omega$ $\frac{1 \text{CHOP}}{5 * R_{ISENSE}}$					

Driver chips	MD3	MD2	MD1	Microsteps	Excitation Mode
	L	L	L	Full Step	2 Phase
	L	L	Н	1/2	1-2 Phase
LV8729	L	Н	L	1/4	W1-2 Phase
Maximum	L	Н	Н	1/8	2W1-2 Phase
128microsteps	Н	L	L	1/16	4W1-2 Phase
36V 1.8A	Н	L	Н	1/32	8W1-2 Phase
301 110/1	Н	Н	L	1/64	16W1-2 Phase
	Н	Н	Н	1/128	32W1-2 Phase
Current	$I_{OUT} = (V_{REF} / 5) / RF1$				
RF1=0.22 Ω					

Driver chips	MS3	MS2	MS1	Microsteps
	L	L	L	Full Step
	L	L	Н	1/2
ST820	L	Н	L	1/4
Maximum	L	Н	Н	1/8
256microsteps	Н	L	L	1/16
45V 1.5A	Н	L	Н	1/32
15 (1:5/(Н	Н	L	1/128
	Н	Н	Н	1/256
Current	T . –	$V_{REF*} V_{DD}$		
Rs=0.15 Ω	I _{peak} =	5 * R _S		


3.4.2 UART Mode of TMC Driver

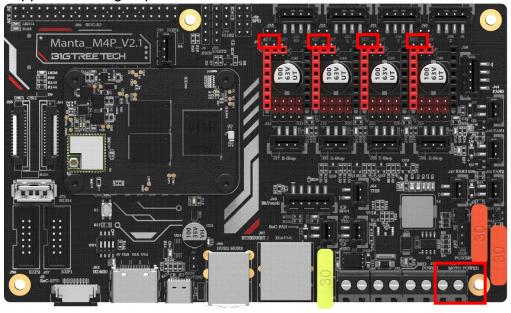
For example, TMC2208, TMC2209, TMC2225... Use a jumper cap for each to connect the position of the red box in the figure, and the subdivision and driver current is set by firmware.


3.4.3 SPI Mode of TMC Driver

For example, TMC2130, TMC5160, TMC5161... Use 4 jumper caps for each to connect the position of the red box in the figure, and the subdivision and driver current is set by firmware.

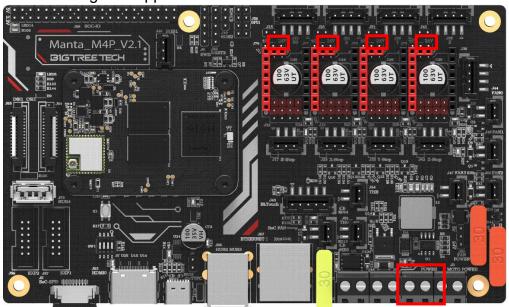
3.4.4 DIAG(Sensorless Homing) of TMC Driver

As shown in the figure, plug the jumper cap when using the Sensorless Homing function, and leave it unplugged when it is not used. There is no need to cut the DIAG pin of the driver.

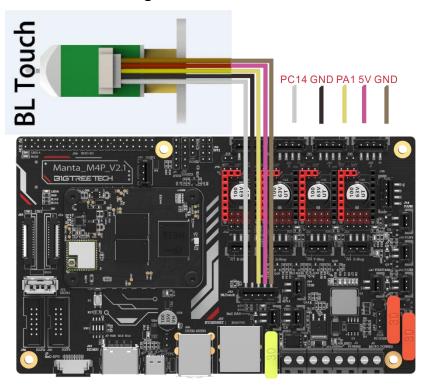


3.4.5 Stepper Driver Voltage Selection

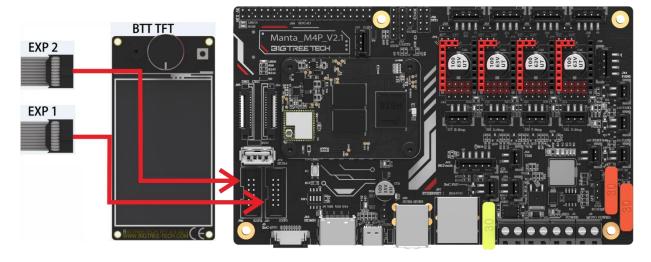
The power supply of each driver can be set by the jumper. When the jumper is inserted into the left side, the independent MOTOR POWER port is used for driver power, and the supported voltage up to 56V. When the jumper is inserted into the right side, the main POWER port is used for driver power, and the 12/24v voltage is supported.

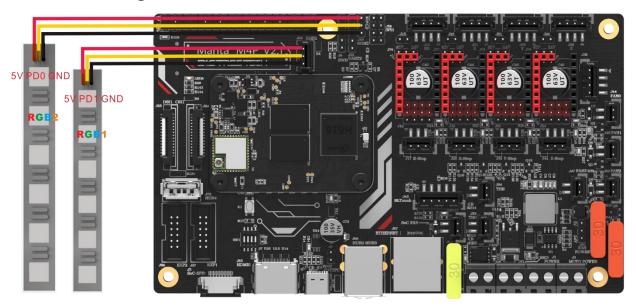

3.4.5.1 Driver independent power supply

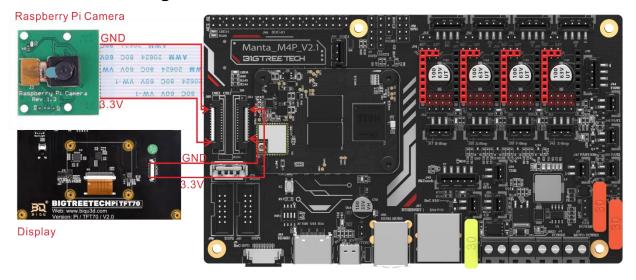
The jumper is inserted into the left side and powered by the MOTOR POWER port. the supported voltage up to 56V.

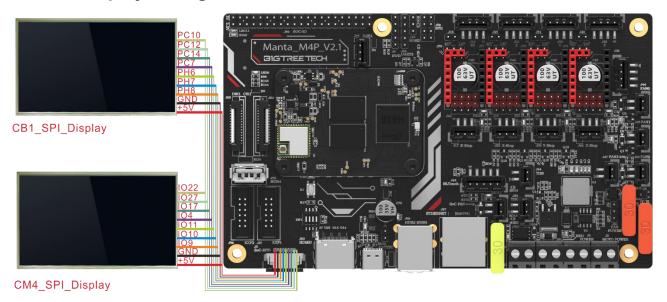


3.4.5.2 Main power supply


The jumper is inserted into the right side and powered by the main POWER port. the 12/24v voltage is supported.


3.5 BLTouch Wiring


3.6 EXP1+EXP2 and LCD Screen Wiring


3.7 RGB Wiring

3.8 DSI/CSI Wiring

3.9 SPI Display Wiring

4. Raspberry PI CM4 Setup steps

4.1 Download OS Image

If CM4 core board is used, You can directly download the images of Fluidd or Mainsail, also can download the OS image from the official website of Raspberry Pi

Fluidd: https://github.com/fluidd-core/FluiddPl/releases

Mainsail: https://github.com/mainsail-crew/MainsailOS/releases

Raspberry Pi official OS: https://www.raspberrypi.com/software/operating-systems (CM4 needs to refer to the following system settings to enable the system's USB, DSI and other interfaces, whose operation is slightly different from the standard Raspberry Pi 3B, 4B, etc.)

Raspberry Pi OS

Our recommended operating system for most users.

Compatible with:

All Raspberry Pi models

Raspberry Pi OS with desktop

Release date: January 28th 2022 System: 32-bit Kernel version: 5.10 Debian version: 11 (bullseye) Size: 1,246MB Show SHA256 file integrity hash:

Download

Download torrent

Raspberry Pi OS with desktop and recommended software

Release date: January 28th 2022 System: 32-bit Kernel version: 5.10 Debian version: 11 (bullseye) Size: 3,267MB

Download

Download torrent

Archive

Show SHA256 file integrity hash:

Release notes

Release notes

Raspberry Pi OS Lite

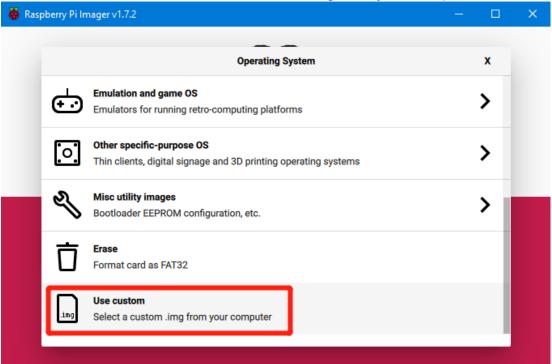
Release date: January 28th 2022 System: 32-bit Kernel version: 5.10 Debian version: 11 (bullseye) Size: 482MB Show SHA256 file integrity hash: Release notes

Download

Download torrent
Archive

4.2 Download and Install Raspberry Pi Imager

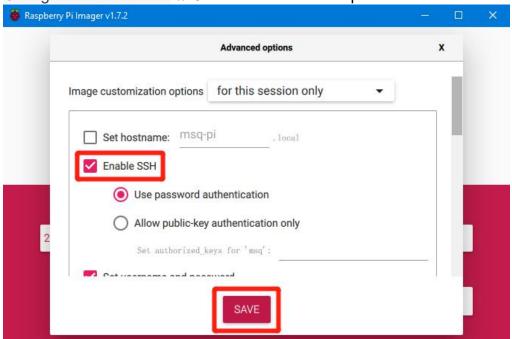
Install the official Raspberry Pi Imager: https://www.raspberrypi.com/software/


4.3 Write OS Image

4.3.1 CM4 LITE Version (Micro SD Card)

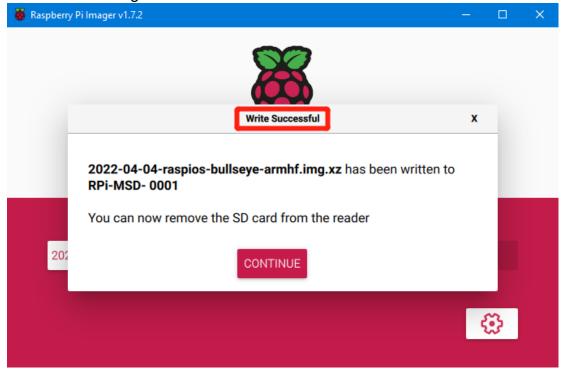
- 1. Plug the Micro SD card into the computer via a card reader.
- 2. Select Operating System.

3. Select "Use Custom", then select a custom.img from your computer.


4. Click the setting icon in the lower right corner

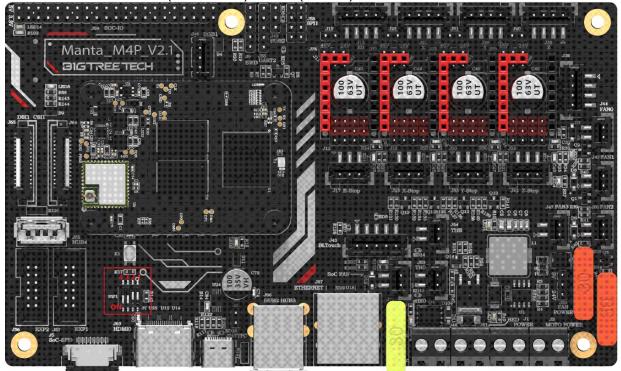
5. "Enable SSH"and click"SAVE", There are other features that can be set in this menu. Please modify them according to your own needs. Details are as follows: Set hostname: raspberrypi.local //Custom hostname Default:raspberrypi.local Enable SSH

Set username and password // Custom username and password, Default username: pi password: raspberry


Configure wireless LAN // Custom the SSID and password of WLAN

Select the Micro SD card and click "WRITE" (Writing the image will format the Micro SD card. Be careful not to select the wrong storage device, otherwise, the data will be formatted).

7. Wait for the writing to finish.


4.3.2 CM4 eMMC Version(Note: eMMC version will not tun the system from the Micro SD card.)

 Install rpiboot For Windows:

http://github.com/raspberrypi/usbboot/raw/master/win32/rpiboot_setup.exe For Mac and Linux:

https://github.com/raspberrypi/usbboot#building

2. Push the DIP switch 4 (USB OTG) and 3 (BOOT) to ON to enter BOOT mode.

- 3. Plug the Type-C into the USB port of the computer(in order to avoid problems caused by the insufficient USB power supply of the computer, it is best to use an external 24V power supply to power the motherboard). Run sudo ./rpiboot(Mac/Linux) or rpiboot.exe on Windows, then the eMMC of CM4 will be recognized as a mass storage device by the computer (if rpiboot reports an error at this time, you can try to re-plug the USB).
- 4. The step of using the Raspberry Pi Imager to write the OS image is exactly the same as the LITE version. Note: the SSH function should also be enabled.
- 5. When the writing is completed, push the DIP switch 4 (USB OTG) and 3 (BOOT) back to OFF after power off, and power on again to enter the normal working mode.

4.4. System Settings (CM4)

4.4.1 USB 2.0 Hub Ports

M4P is designed with a USB 2.0 Hub, in order to save power consumption, the USB port of CM4 is disabled by default. If you want to enable it, you need to add the following content to the config.txt file:

dtoverlay=dwc2,dr mode=host

4.4.2 DSI1 Display Interface

The default display interface is HDMI. The onboard DSI port of M4P uses the DSI1 interface. You need to download the DSI1 driver and enter the following sentence in the command line:

sudo wget https://datasheets.raspberrypi.com/cmio/dt-blob-disp1-cam1.bin -O /boot/dt-blob.bin After downloading this driver and restarting, the screen of DSI1 will work normally. If you want to use the HDMI interface, you need to delete the downloaded /boot/dt-blob.bin driver and restart, then the HDMI can output normally.

4.4.3 CSI1 Camera

The DSI1 driver downloaded in **4.4.2 DSI1 Display Interface** also includes the CSI1 driver. If you just want to install the CSI1 driver, not DSI1, please find the driver you want to use at https://datasheets.raspberrypi.com/licence.html and download it in the boot folder of CM4 and rename it to dt-blob.bin, and then refer to the settings here. https://projects.raspberrypi.org/en/projects/getting-started-with-picamera/

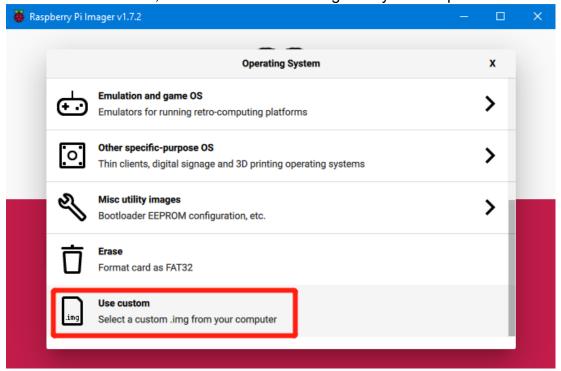
5. BIGTREETECH CB1 Setup steps

5.1 Download OS Image

If BIGTREETECH CB1 core board is used, You can only download and install the system image provided by BIGTREETECH:

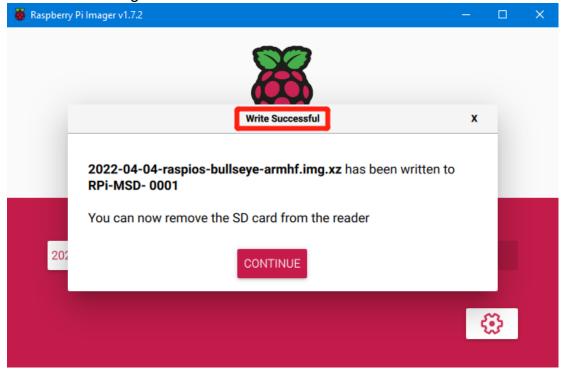
https://github.com/bigtreetech/CB1/releases

5.2 Download and Install Raspberry Pi Imager

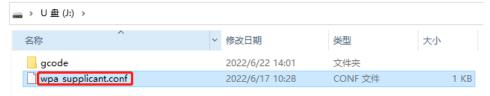

Install the official Raspberry Pi Imager: https://www.raspberrypi.com/software/
The system image of CB1 can also be written with this software.

5.3 Write OS Image

- 1. Plug the Micro SD card into the computer via a card reader.
- 2. Select Operating System.


3. Select "Use Custom", then select a custom.img from your computer.

4. Select the Micro SD card and click "WRITE" (Writing the image will format the Micro SD card. Be careful not to select the wrong storage device, otherwise, the data will be formatted).


5. Wait for the writing to finish.

5.4 WIFI Setting

note: skip this step if you are using ethernet port not using WIFI

CB1 cannot directly use the Raspberry Pi Imager software to set the WiFi name and password like CM4. After the system image writing is completed, the Micro SD card will have a FAT32 partition recognized by the computer, Find "wpa supplicant.conf" file

Open it with Notepad, and replace WIFI-SSID with the actual WiFi name, and PASSWORD with the actual password

5.5 Install Klipper with kiauh Script

- Download kiauh: git clone -b CB1 --depth 1 https://github.com/bigtreetech/kiauh.git
- 2. Run kiauh:

./kiauh/kiauh.sh Klipper Installation And Update Helper 0) [Log-Upload] Klipper: Not installed! Branch: [Install]
[Update]
[Remove] Moonraker: Not installed! Mainsail: Not installed! Fluidd: Not installed! KlipperScreen: Not installed! Telegram Bot: Not installed! [Advanced] 5) [Backup] 6) [Settings] Octoprint: Not installed! v4.0.0-8 lodge Custom Q) Quit ###### Perform action:

On the left side of the Main Menu: install, remove, upgrade, etc. On the right side of the Main Menu: show the installation status.

Select 1 to enter the Installation Menu and install the software you need.

The 3D printer can work normally when having 'Klipper', 'Moonraker' and 'Fluidd', if you have a touch screen, you can also install 'KlipperScreen'.

4. During the installation process, when prompted for confirmation, you can select the configuration by default. After the installation is complete, back to the Main Menu to ensure that the installed software is in the 'Installed' status.

5.6 Checkout Klipper Branch

If you want to customize the functions of Klipper, which the official does not support, you can fork the Klipper repository to your own repository, and use the kiauh script to update after completing the function modification. The specific operations are as follows:

1. On the kiauh Main Menu, select F to enter the Custom Function Menu.

- 2. Select 0, automatically add custom text, after the prompt of successful, select B to back to the Main Menu.
- 3. Select 6 to enter Settings, then select 2 to enter the checkout Klipper repository.

0 is the official repository of Klipper, it is recommended not to modify it, it can be used to restore; 1 is the Klipper repository after we added our own modification function. The specific way to add is to modify the ~/kiauh/klipper repos.txt file.

```
# This file acts as an example file.

# 1) Make a copy of this file and rename it to 'klipper_repos.txt'

# 2) Add your custom Klipper repository to the bottom of that copy

# 3) Save the file

# Back in KIAUH you can now go into -> [Settings] and use action '2' to set a different Klipper repository

# Make sure to always separate the repository and the branch with a ','.

# <repository>,<branch> -> https://github.com/Klipper3d/klipper,master

# If you omit a branch, it will always default to 'master'

# You are allowed to omit the 'https://github.com/' part of the repository URL

# Down below are now a few examples of what is considered as valid:

https://github.com/Klipper3d/klipper,master

https://github.com/EchoHeim/klipper,lodge
```

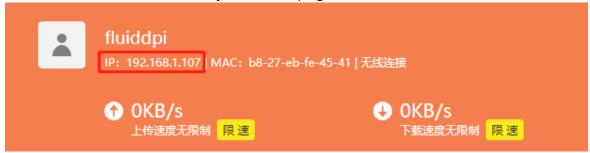
Add your own repository name and branch name after the file, separated by an

English comma (,). If you do not specify a branch name, the default is the master branch. When the addition is completed, you can view it in the kiauh script.

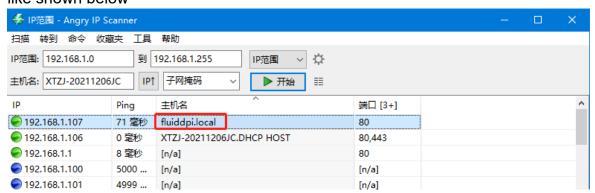
4. Choose the Klipper branch you want, and a proceeding confirmation prompt will appear.

Just confirm.

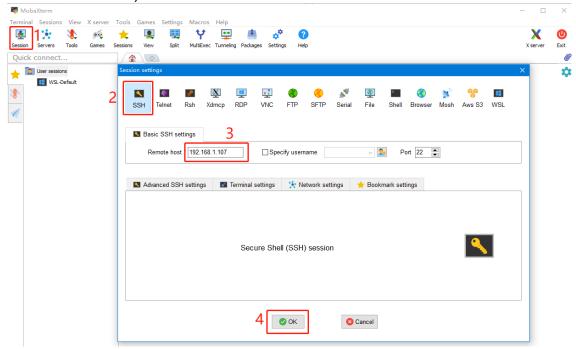
5.7 Fix KlipperScreen


KlipperScreen cann't be displayed directly on CB1. You need to follow the following steps to repair it.

On the kiauh script Main Menu, select F to enter the Custom Function Menu, and then select 2 to fix.

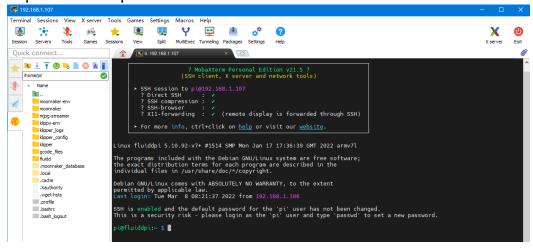

6. Configure the motherboard

6.1 ssh connect to device


- 1. Install the ssh application Mobaxterm: https://mobaxterm.mobatek.net/download-home-edition.html
- 2. Insert Micro SD card to M4P, wait for system to load after power on, aprox. 1-2min
- The device will automatically be assigned a IP address after successfully connected to the network
- Find the device IP address in your router page

5. Or use the https://angryip.org/ tool, scan all IP address in the current network organize by names, find the IP named Fluidd, Mailsail (CM4) or Hurakan (CB1) like shown below

6. Open Mobaxtermand click "Session", and click "SSH", inset the device IP into Remote host and click "OK" (note: your computer and the device needs to be in the same network)

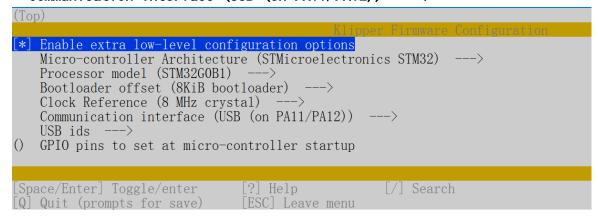

7. Input the login name and password to enter the SSH terminal interface CM4:

login as: pi

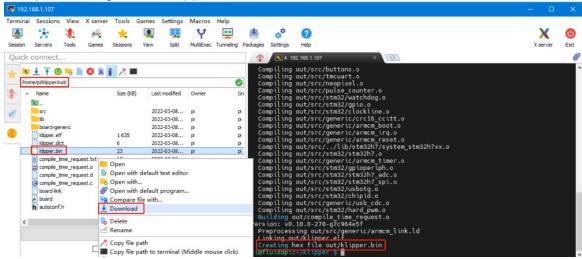
password: raspberry

CB1:

login as: biqu password: biqu


6.2 Compile firmware

1. After ssh successfully connected to the device, enter in terminal:


```
cd ~/klipper/
make menuconfig
```

Compile with the configuration shown below(if the options below is not available, please update you Klipper source code to the newest version)

- * [*] Enable extra low-level configuration options
- * Micro-controller Architecture (STMicroelectronics STM32) --->
- * Processor model (STM32G0B1) --->
- * Bootloader offset (8KiB bootloader) --->
- * Clock Reference (8 MHz crystal) --->
- * Communication interface (USB (on PA11/PA12)) --->

- 2. Press q to exit, and Yes when asked to save the configuration
- 3. Run make to compile firmware, "klipper.bin" file will be generated in home/pi/kliiper/out folder when make is finished, download it onto your computer using the ssh application.

6.3 Firmware update

6.3.1 Update using SD Card

- Rename klipper.bin to "firmware.bin", Copy to the SD card root directory, insert the SD card into the SD card slot of the M4P, click the "reset" button or power on again. The firmware will be updated automatically. After the update, the "firmware.bin" in the SD card will be renamed as "FIRMWARE.CUR".
- Enter: 1s /dev/serial/by-id/ in terminal to check motherboad ID to confirm whether firmware is updated successfully like shown below.

```
pi@fluiddpi:~/klipper $ ls /dev/serial/by-id/
usb-Klipper_stm32g0b1xx_190028000D50415833323520-if00
pi@fluiddpi:~/klipper $
```

copy and save this ID, it is needed when modifying klipper config

6.3.2 Update using DFU

If the MCU klipper device ID can be found by **1s** /dev/serial/by-id/, we can input: make flash FLASH_DEVICE= /dev/serial/by-id/usb-Klipper_stm32g0b1xx_190028000D50415833323520-if00 to update firmware (NOTE: Replace /dev/serial/by-id/xxx with the actual ID found in the previous step)

```
biqu@Hurakan:-/klippers| make flash FLASH_DEVICE=/dev/serial/by-id/usb-klipper_stm32g0b1xx_190028000050415833323520-if00

Building hid-flash
flash requires libusb-1.0, please install with:
    sudo apt_pet install libusb-1.0
    Flashing out/klipper.bin to /dev/orial/by-id/usb-klipper_stm22g0b1xx_190028000050415833323520-if00
    Flashing out/klipper.bin to /dev/orial/by-id/usb-klipper_stm22g0b1xx_190028000050415833323520-if00
    Flashing out/klipper.bin to /dev/orial/by-id/usb-klipper_stm22g0b1xx_190028000050415833323520-if00
    Flashing out/klipper.bin to /dev/orial/by-id/usb-klipper_stm22g0b1xx_19002800050415833323520-if00
    Flashing out/klipper.bin to /dev/orial/by-id/usb-klipper.bin
    dfu-util 0.9

Copyright 2005-2009 Weston Schmidt, Harald Welte and OpenMool Inc.
Copyright 2005-2009 Weston Schmidt, Harald Welte and OpenMool Inc.
Copyright 2005-2009 Weston Schmidt, Harald Welte and OpenMool Inc.
Copyright 2005-2009 Weston Schmidt Welter and Stefan Schmidt
    This program is Free Software and has ABSOUTELY NO WARRANTY
Please report bugs to hittp://sourceforge.met/p/dfu-util/tickets/

dfu-util: Invalid DFU suffix signature
dfu-util: A valid DFU suffix signature
dfu-util: Invalid DFU suffix signature

Develor Extra Suffix DFU version 011a

Device returned transfer size 1024

DFU sond SDFU Interface...
Setting Alternate Setting 0

DFU mode device DFU version 011a

Device returned transfer size 1024

DFU sond device DFU version 011a

Device returned transfer size 1024

DFU sond device DFU version 011a

Device returned transfer size 1024

DFU sond device DFU version 011a

Device returned transfer size 1024

DFU sond device DFU version 011a

Device returned transfer size 1024

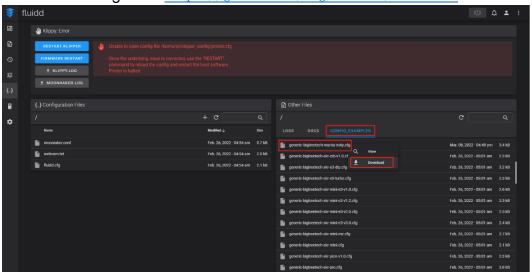
DFU sond device DFU version 011a

Device returned transfer size 1024

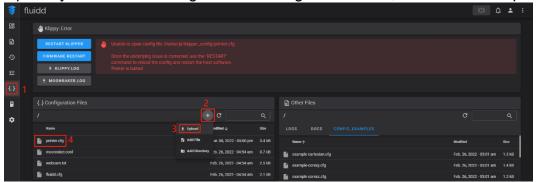
DFU sond device DFU version 011a

Device returned transfer size 1024

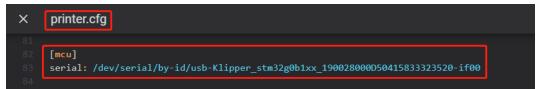
DFU sond device DFU version 011a


DFU mode device DFU version 011a

DFU mode d
```


There will be an error message "dfu-util: Error during download get_status" after update. Just ignore it.

6.4 Configure Klipper


1. Enter your device IP address into your browser to open the webUI, find the reference config for motherboard in the directory shown below, if there is no such config available, update your klipper source code to the newest version or download from github: https://github.com/bigtreetech/Manta-M4P

2. Upload your finished config file into Configuration Files, and rename to "printer.cfg"

Insert the correct motherboad ID

Refer to https://www.klipper3d.org/Overview.html for detailed configuration guide according to your machine type.

7. Precautions

- 1. All unplugging and plugging operations should be performed under the condition of power off, including enabling the eMMC writing.
- 2. Pay attention to the heat dissipation of CM4 and CB1. If the running application consumes too many system resources, the CM4/CB1 will get hot quite seriously.

If you need other resources for this product, please visit https://github.com/bigtreetech/ and find them yourself. If you cannot find the resources you need, you can contact our after-sales support.

If you encounter other problems during use, feel free to contact us, and we are answering them carefully; Any good opinions or suggestions on our products are also welcome, too, and we will consider them carefully. Thank you for choosing BIGTREETECH. Your support means a lot to us!