Acetyl-transferase NAT10 Inhibitor - Remodelin

Chemical Name: 4-(2-(2-cyclopentylidenehydrazinyl)thiazol-4-yl)benzonitrile

Molecular Weight:	282.36
Formula:	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{~S}$
Purity:	$\geq 98 \%$
CAS\#:	n / a
Solubility:	DMSO up to 100 mM
Storage	Powder: $4^{\circ} \mathrm{C} 1$ year DMSO: $4^{\circ} \mathrm{C} 3$ months $-20^{\circ} \mathrm{C} 1$ year

Biological Activity:

Remodelin is a novel potent and selective inhibitor of the acetyl-transferase protein NAT10. It can improve nuclear architecture, chromatin organization, and fitness of both human lamin A/C-depleted cells and HGPSderived patient cells, and decrease markers of DNA damage in these cells. Using a combination of chemical, cellular, and genetic approaches, acetyl-transferase protein NAT10 was identified as the target of Remodelin that mediated nuclear shape rescue in laminopathic cells via microtubule reorganization. Down-regulation and mutations of the nuclear-architecture proteins lamin A and C cause misshapen nuclei and altered chromatin organization associated with cancer and laminopathies, including the premature-aging disease Hutchinson-Gilford progeria syndrome (HGPS). Remodelin is a useful chemical tool to study how NAT10 affects nuclear architecture and suggest alternative strategies for treating laminopathies and aging.

How to Use:

In vitro: Remodelin was used at $1-10 \mu \mathrm{M}$ in vitro and cellular assays.
In vivo: n / a

Reference:

1. Larrieu D, et al. Chemical inhibition of NAT10 corrects defects of laminopathic cells. (2014) Science 344(6183):527-32.

Products are for research use only. Not for human use.

