

LSD1 Inhibitor – RN-1

Chemical Name: 2-((1R,2S)-2-(4-(benzyloxy)phenyl)cyclopropylamino)-1-(4-methylpiperazin-1-yl)ethanone dihydrochloride

Molecular Weight:	452.42
Formula:	C ₂₃ H ₂₉ N ₃ O ₂ .2HCl
Purity:	≥98%
CAS#:	1781835-13-9
Solubility:	DMSO up to 20 mM
Storage	Powder: 4 °C 1 year
	DMSO: 4 °C 3 months
	-20 °C 1 year

Biological Activity:

RN-1 is a potent, specific and brain-penetrant Lysine Specific Demethylase-1 (LSD1) inhibitor. It inhibits LSD1 in biochemical assay with an $IC_{50} \sim 70$ nM, and has weaker activity against monoamine oxidase proteins MAO-A and MAO-B with $IC_{50} \sim 0.51 \mu$ M and 2.79 μ M respectively. It exhibits good brain penetration and retention following systemic administration. RN-1 can abolish long-term memory formation without affecting short-term memory in the novel object recognition (NOR) mouse model. RN-1 could be a useful chemical probe to study the importance of reversible histone methylation in the function of the nervous system.

How to Use:

In vitro: RN-1 was used at 1 μ M in vitro.

In vivo: RN-1 was administered by intraperitoneal injection once a day at a dose of 10-30 mg/kg to the novel object recognition (NOR) mouse model. RN-1 exhibits good brain penetration and retention.

Reference:

1. Neelamegam R, et al. Brain-penetrant LSD1 inhibitors can block memory consolidation. (2012) ACS Chem Neurosci. 3(2):120-128.

Products are for research use only. Not for human use.