

IRE-3 --- IRE1a Modulator

Chemical Name: 1-(4-(8-amino-3-isopropylimidazo[1,5-a]pyrazin-1-yl)naphthalen-1-yl)-3-(3-(trifluoromethyl)phenyl)urea

Molecular Weight:	504.51
Formula:	C ₂₇ H ₂₃ F ₃ N ₆ O
Purity:	≥98%
CAS#:	1414938-21-8
Solubility:	DMSO up to 50 mM
Storage	Powder: 4 °C 1 year
-	DMSO: 4 °C 3 months
	-20 °C 1 vear

Biological Activity:

IRE-3 is a highly potent and selective small molecule modulator of IRE1 α . Under endoplasmic reticulum stress, unfolded protein accumulation leads to activation of the endoplasmic reticulum transmembrane kinase/endoRNase (RNase) IRE1 α . IRE1 α oligomerizes, autophosphorylates and initiates splicing of XBP1 mRNA, thus triggering the unfolded protein response (UPR). Interestingly, IRE-3 inhibits the XBP1 mRNA splicing through binding to the IRE1 α ATP-binding site, even under endoplasmic reticulum stress. It shows dose-dependent reduction of IRE1 α kinase autophosphorylation in vitro with IC₅₀~3.12 μ M. IRE-3 can also block enzymatic activities of IRE1 α in INS-1 rat insulinoma cell lines. As dysregulation of the UPR has been implicated in a variety of cell degenerative and neoplastic disorders, small molecule modulators of IRE1 α , such as IRE-3 and APY-29, serve as useful tools to understand the UPR's role in pathophysiology and to develop drugs for endoplasmic reticulum stress-related diseases.

How to Use:

In vitro: IRE-3 was used at 10-20 μ M in vitro and in cellular assays.

In vivo:

Reference:

 Wang L, et al. Divergent allosteric control of the IRE1α endoribonuclease using kinase inhibitors. (2012) Nat Chem Biol. 8(12):982-9.

Products are for research use only. Not for human use.