

http://www.xcessbio.com Toll free: 1-866-706-2330 Fax: 1-619- 810-0718

Email: info@xcessbio.com

mTOR Inhibitor - AZD2014

Chemical Name: 3-(2,4-bis((S)-3-methylmorpholino)pyrido[2,3-d]pyrimidin-7-yl)-N-methylbenzamide

H. F	No No No
	""(N)

Molecular Weight:	462.54
Formula:	$C_{25}H_{30}N_6O_3$
Purity:	≥ 98%
CAS#:	1009298-59-2
Solubility:	DMSO up to 100 mM
Storage	Powder: 4°C 1 year
	DMSO: 4°C 3 month
	-20°C 1 year

Biological Activity:

AZD2014 is a highly potent, selective and ATP-competitive mTOR inhibitor (IC $_{50}$ = 2.8 nM). It displays a high level of selectivity against other members of the PIKK family (IC $_{50}$ against PI3K isoforms α , β , γ , δ = 3.8 μ M, >30 μ M, >30 μ M and >29 μ M, respectively) and is inactive against a general panel of over 200 kinases when tested at 10 μ M. AZD2014 inhibits both mTORC1 and mTORC2 in vitro (pS6 (S $^{235/236}$) IC $_{50}$ = 0.2 μ M, pAKT (S 473) IC $_{50}$ = 0.08 μ M) and has shown dose-dependent tumor growth inhibition in a mouse MCF7 xenograft model alongside modulation of mTORC1 and mTORC2 biomarkers. Different from AZD8055, AZD2014 shows consistent exposure in rodents and a low turnover in human hepatocyte incubations. It is in phase I clinical development for advanced solid malignancies.

How to Use:

In vitro: AZD2014 was used at 2.5-5 μM concentration in vitro and cellular assays.

In vivo: AZD2014 was orally dosed to mice at 2.5-20 mg/kg once or twice per day to inhibit tumor growth.

Reference:

- 1. Guichard SM, at al. AZD2014, a dual mTORC1 and mTORC2 inhibitor is differentiated from allosteric inhibitors of mTORC1 in ER+ breast cancer. (2012) AACR Annual Meeting: Chicago, Abstract 917.
- 2. Pike KG, et al. Optimization of potent and selective dual mTORC1 and mTORC2 inhibitors: The discovery of AZD8055 and AZD2014. (2013) Bioorg Med Chem Lett. In press.

Products are for research use only. Not for human use.