2inch LCD Module

Instruction

This is a general LCD display Module, IPS screen, 2inch diagonal, 240×320 resolution, with embedded controller, communicating via SPI interface

Feature

SPI interface, requires minimum GPIO for controlling

Comes with development resources and manual

Specifications

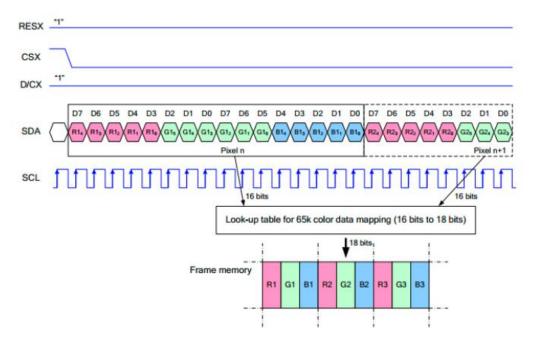
Working voltage: 3.3V/5V

Interface: SPIDisplay color: RGBResolution: 240×320

Pixel size: 0.0975 (H) x 0.0975 (V) mm

Backlight: LED

• Product size: 58x35(mm)


Interface

SYMBOL	Description
VCC	Power (3.3V input)
GND	Ground
DIN	SPI data input
CLK	SPI clock input
CS	Chip selection, low active
DC	Data/Command selection (high for data, low for command)
RST	Reset, low active
BL	Backlight

Hardware description

ST7789V supports RGB444, RGB565 and RGB666 three formats. This LCD uses RGB565. For most of the LCD controller, there are several interfaces for choosing, this module we use SPI interface which is fast and simple.

Communication protocol

Note: It is not like the tradition SPI protocol, it only uses MOSI to send data from master to slave for LCD display. For details please refer to Datasheet Page 105.

RESX: Reset, should be pull-down when power on, set to 1 other time.

CSX: Slave chip select. The chip is enabled only CS is set Low

D/CX: Data/Command selection; DC=0, write command; DC=1, write data

SDA: Data transmitted. (RGB data)

SCL: SPI clock

The SPI communication protocol of the data transmission uses control bits: clock phase (CPHA) and clock polarity (CPOL):

CPOL defines the level while the synchronization clock is idle. If CPOL=0, then it is LOW.

CPHA defines at whish clock's tick the data transmission starts. CPHL=0 – at the first one, otherwise at the second one

This combination of two bits provides 4 modes of SPI data transmission. The commonly used is SPI0 mode, i.e. GPHL=0 and CPOL=0.

According to the figure above, data transmitting begins at the first falling edge, 8bit data are transmitted at one clock cycle. It is SPI0. MSB.

Raspberry Pi examples

For Raspberry Pi we provide examples based on C and python

Enable SPI

Open terminal and run commands to enable SPI interface

```
sudo raspi-config
```

Choose Interfacing Options -> SPI -> Yes

Then reboot Raspberry Pi

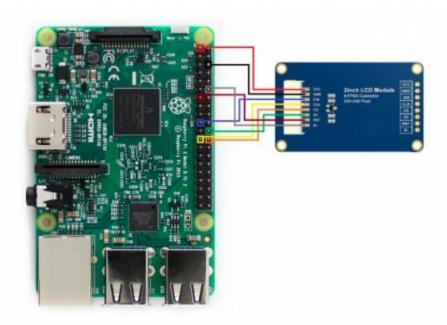
Libraries installation

BCM2835

```
wget http://www.airspayce.com/mikem/bcm2835/bcm2835-1.60.tar.gz
tar zxvf bcm2835-1.60.tar.gz
cd bcm2835-1.60/i
sudo ./configure
sudo make
sudo make check
sudo make install
```

• WiringPi

```
sudo apt-get install wiringpi,
cd /tmp;
wget https://project-downloads.drogon.net/wiringpi-latest.deb;
sudo dpkg -i wiringpi-latest.deb;
gpio -v;
```


• Python2

```
sudo apt-get updata
sudo apt-get install python-pip
sudo pip install RPi.GPIO
sudo pip install spidev
sudo apt-get install python-imaging
```

• Python3

```
sudo apt-get update
sudo apt-get install python3-pip
sudo pip3 install RPi.GPIO
sudo pip3 install spidev
```

Hardware connection

Please notice, that wires colors may vary. Use pins designations for wiring.

2inch LCD	Board number	BCM number		
VCC	3.3V	3.3V		
GND	GND	GND		
DIN	19	MOSI		
CLK	23	SCLK		
CS	24	CE0		
DC	22	P25		
RST	13	P27		
BL	12	P18		

Download examples

Open terminal and download examples

sudo chmod 777 -R 2inch LCD Module code

cd 2inch_LCD_Module_code/RaspberryPi\&JetsonNano/

Test examples

C codes

cd ci sudo make clean, sudo make sudo ./main

Python codes

cd python/examples

Expected result

- 1. The display is cleaned to white
- 2. Display numbers and strings
- 3. Draw a rectangle
- 4. Draw a line
- 5. Draw five circles
- 6. Display a 100x100 image
- 7. display a 240x320 image

STM32 examples

Hardware connection

2inch LCD	XNUCLEO-F103RB
VCC	5V
GND	GND
DIN	PA7
CLK	PA5
CS	PB6
DC	PA8
RST	PA9
BL	PC7

Expected result

- 1. The display is cleaned to white
- 2. Display numbers and strings
- 3. Draw a rectangle
- 4. Draw a line
- 5. Draw five circles
- 6. Display a 70x70 image

Arduino

- Download examples from wiki. Unzip it. The path of Arduino examples is ~/Arduino UNO/...
- Copyt the folders in Arduino directory to 【Installation directory】/libraries/ (Generally the installation directory is C:\Program Files (x86)\Arduino\libraries)
- Open Arduino IDE software, and click File -> Examples to check if LCD_2inch codes are there.
- The development board used is Arduino UNO.

Hardware connection

2inch LCD	UNO PLUS
VCC	5V
GND	GND
DIN	D11
CLK	D12
CS	D10
DC	D7
RST	D8
BL	D9

Expected result

- 1. The display is cleaned to white
- 2. Display numbers and strings
- 3. Draw a rectangle
- 4. Draw a line
- 5. Draw five circles
- 6. Display a 70x70 image