

GETROM Home Appliance Co., Ltd.

TEST REPORT

SCOPE OF WORK EMC TESTING- See Page 2

REPORT NUMBER 200103058GZU-001

ISSUE DATE

[REVISED DATE]

[-----]

13-March-2021

PAGES 65

DOCUMENT CONTROL NUMBER FCC Part 15:2019-e © 2017 INTERTEK

TEST REPORT

Room 02, & 101/E201/E301/ E401/E501/E601/E701/E801 of Room 01 1-8/F., No. 7-2. Caipin Road, Science City, GETDD, Guangzhou, Guangdong, China Telephone: +86 20 8213 9688 Facsimile: +86 20 3205 7538 www.intertek.com.cn

Applicant Name & Address	:	Empava Appliances Inc. 15253 Don Julian Road City of industry CA.91745 USA
Manufacturing Site Intertek Report No:	:	Same as Applicant 191105128GZU-001 Amendment 1

Test standards

CFR 47, FCC Part 15, Subpart B:2019

Sample Description

Product		Built-In Electric Cooktop
Model No.	:	GK-CD122402, GK-CD122405, GK-CD123002, GK-CD123005, GK-CF246004, GK-CF246005, GK-CF246404, GK-CF246405, GK-CF306704, GK-CF306705,
		GK-CV307205, GK-CV307209, GK-CV367705, GK-CV367709.
Electrical Rating	:	See page 5(Model Similarity for detail)
Serial No.		Not Labeled
Date Received	:	03 January 2020
Date Test	:	21 January 2020-22 January 2020
Conducted		

Prepared and Checked By

an

Doctang Tang Engineer

Approved By:

Sky Zhu Team Leader

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Intertek Testing Services Shenzhen Ltd. Guangzhou Branch

Room 02, & 101/E201/E301/E401/E501/E601/E701/E801 of Room 01 1-8/F., No. 7-2. Caipin Road, Science City, GETDD, Guangzhou, Guangdong, China

Version: 02-April-2020

Page 2 of 65

TEST REPORT

CONTENT

TEST	REPORT		1
CON	NTENT		3
1.	TEST R	ESULTS SUMMARY	4
2.	EMC R	ESULTS CONCLUSION	5
3.	LABOR	ATORY MEASUREMENTS	7
4.	EQUIPI	MENT USED DURING TEST	8
5.	EMI TE	ST	
5	.1 Co	NDUCTED DISTURBANCE VOLTAGE AT MAINS PORTS	
	5.1.1	Block Diagram of Test Setup	
	5.1.2	Test Setup and Procedure	
	5.1.3	Limit	
	5.1.4	Test Data and curve	
5	.2 RA	DIATED EMISSION 30 MHz -1000 MHz	
	5.2.1	Block Diagram of Test Setup	
	5.2.2	Test Setup and Procedure	
	5.2.3	Limit	
	5.2.4	Test Data and Curve	
5	.3 RA	DIATED EMISSION ABOVE 1 GHZ	
6.	APPEN	DIX I - PHOTOS OF TEST SETUP	
7.	APPEN	DIX II – PHOTOS OF EUT	

TEST REPORT

1. TEST RESULTS SUMMARY

Classification of EUT: Class B

Test Item	Standard	Result		
Conducted disturbance voltage at mains ports	CFR 47, FCC Part 15, Subpart B	Pass		
Radiated emission (30 MHz–1 GHz)	CFR 47, FCC Part 15, Subpart B	Pass		
Radiated emission (Above 1 GHz)	CFR 47, FCC Part 15, Subpart B	N/A		
Remark:				
Reference publication is used for methods of measurement: ANSI C63.4:2014				

Remark:

1. The symbol "N/A" in above table means Not Applicable.

2. When determining the test results, measurement uncertainty of tests has been considered.

TEST REPORT

2. EMC RESULTS CONCLUSION

RE: EMC Testing Pursuant to FCC part 15 performed on the Built-In Electric Cooktop, Models: GK-CD122402, GK-CD122405, GK-CD123002, GK-CD123005, GK-CF246004, GK-CF246005, GK-CF246404, GK-CF246405, GK-CF306704, GK-CF306705, GK-CV307205, GK-CV307209, GK-CV367705, GK-CV367709.

Model Similarity

Model	Model	Size (mm)	Rating Combination (W)	Ratings (W)	Control type
Similarity GK-CD122402	288*520	1200+1200	120V, 60Hz, 2400W	Electronic	
	GK-CD122405			220-240V, 60Hz, 2400W	Mechanical
	GK-CD123002		1800+1200	220-240V, 60Hz, 3000W	Electronic
	GK-CD123005				Mechanical
	GK-CF246004	590*520	1200X2+1800X2	220-240V, 60Hz, 6000W	Electronic
	GK-CF246005				Mechanical
	GK-CF246404		1200X2+2200+1800	220-240V, 60Hz, 6400W	Electronic
	GK-CF246405				Mechanical
	GK-CF306704	770*520	1200X2+2500+1800	220-240V, 60Hz, 6700W	Electronic
	GK-CF306705	1			Mechanical
	GK-CV307205		1200X2+2500+2200+100	220-240V, 60Hz,7200W	Mechanical
	GK-CV307209	1			Electronic
	GK-CV367705	900*520	1200X2+3000+2200+100	220-240V, 60Hz,7700W	Mechanical
	GK-CV367709	1			Electronic

Model GK-CD123002(including main PCB, control PCB) is same as GK-CD122402 except for the power

Model GK-CF246004, GK-CF306704 (including main PCB, control PCB) are same as GK-CF246404 except for the power

Model GK-CV307209(including main PCB, control PCB) is same as GK-CV367709 except for the power

Based on up difference models GK-CD122402, GK-CV367709, GK-CF246404 had been performed full test.

We tested the Built-In Electric Cooktop, Models: GK-CD122402, GK-CV367709, GK-CF246404, to determine if they were in compliance with the relevant standards as marked on the Test Results Summary. We found that the units met the requirement of FCC part 15 standard when tested as received. The worst case's test data was presented in this test report.

The production units are required to conform to the initial sample as received when the units are placed on the market.

TEST REPORT

Heating zone(#1,#2,#3,#4,#5) defined only used for test Model GK-CD122402

Model GK-CV367709

Model GK-CF246404

TEST REPORT

3. LABORATORY MEASUREMENTS

Configuration Information

Support Equipment: N/A

Rated Voltage and frequency under test: Condition of Environment: 240 V~; 60 Hz Temperature: 22~28°C Relative Humidity:35~60% Atmosphere Pressure:86~106kPa

Notes:

1. The EMI measurements had been made in the operating mode produced the largest emission in the frequency band being investigated consistent with normal applications. An attempt had been made to maximize the emission by varying the configuration of the EUT.

2. Test Facility accreditation:

A2LA Certificate Number 0078.10

Intertek Testing Services Shenzhen Ltd. Guangzhou Branch is accredited by A2LA and Listed in FCC website. FCC accredited test labs may perform both Certification testing under Parts 15 and 18 and Declaration of Conformity testing.

3. Test Location:

Intertek Testing Services Shenzhen Ltd. Guangzhou Branch All tests were performed at: Room 02, & 101/E201/E301/E401/E501/E601/E701/E801 of Room 01 1-8/F., No. 7-2. Caipin Road, Science City, GETDD, Guangzhou, Guangdong, China Except Radiated Emissions was performed at: Room 102/104, No 203, KeZhu Road, Science City, GETDD Guangzhou, China

No.	Item	Measurement Uncertaint	
1	Conducted Emission (9 kHz-150 kHz)	2.79 dB	
2	Conducted Emission (150 kHz-30 MHz)	2.55 dB	
3	Disturbance Power (30 MHz-300 MHz)	3.04 dB	
4	Radiated Emission (30 MHz-1 GHz)	4.80 dB	
5	Radiated Emission (1 GHz-6 GHz)	4.97 dB	
6	Radiated Emission (6 GHz-18 GHz)	4.89 dB	

4. Measurement Uncertainty

The measurement uncertainty describes the overall uncertainty of the given measured value during the operation of the EUT.

Measurement uncertainty is calculated in accordance with CISPR16-4-2:2011+A1:2014 +A2:2018.

The measurement uncertainty is given with a confidence of 95%, k=2.

Determination of the test conclusion is based on IEC Guide 115 in consideration of measurement uncertainty.

TEST REPORT

4. EQUIPMENT USED DURING TEST

Conducted Disturbance-Mains Terminal (1)

Equipment No.	Equipment	Model	Manufacturer	Calibration Interval
EM080-05	EMI receiver	ESCI	R&S	1Y
EM006-05	LISN	ENV216	R&S	1Y
SA047-112	Digital Temperature-Humidity Recorder	RS210	YIJIE	1Y
EM004-04	EMC shield Room	8m×3m×3m	Zhongyu	1Y

Radiated Disturbance (30 MHz-1 GHz)

Equipment No.	Equipment	Model	Manufacturer	Calibration Interval
EM030-04	3m Semi-Anechoic Chamber	9×6×6 m3	ETS-LINDGREN	1Y
EM031-02	EMI Test Receiver (9 kHz~7 GHz)	Hz~7 R&S ESR7 R&S 1Y		1Y
EM033-01	TRILOG Super Broadband test Antenna(30 MHz-3 GHz)			1Y
EM031-02- 01	Coaxial cable	Coaxial cable / R&S		1Y
EM036-01	Common-mode absorbing clamp	CMAD 20B TESEQ		1Y
SA047-118	Digital Temperature-Humidity Recorder	RS210 YIJIE		1Y
EM045-01- 01	EMC32 software (RE/RS)	V10.01.00 R&S		N/A

TEST REPORT

Equipment No.	Cal. Due date		
	(DD-MM-YYYY)		
Conducted Distu	rbance-Mains		
Terminal (1)			
EM080-05	19/07/2021		
EM006-05	07/06/2021		
SA047-112	16/11/2021		
EM004-04	21/01/2022		
Conducted Distur	rbance-Mains		
Terminal (2) EM031-04	07/01/2022		
	07/01/2022 06/09/2021		
EM006-06 SA047-111			
	16/11/2021		
EM004-03	21/01/2022		
EM031-04-01	N/A		
Conducted Distur Control Terminal			
EM080-05	19/07/2021		
EM080-05-01	06/09/2021		
SA047-112	16/11/2021		
SAU47-112			
EM004-04 21/01/2022 Conducted Disturbance-Load and			
Control Terminal			
	19/07/2021		
EM005-06-01	06/09/2021		
SA047-112	16/11/2021		
EM004-04	21/01/2022		
Conducted Distu			
Terminal			
EM080-05	19/07/2021		
EM011-05	12/04/2021		
EM011-06	12/04/2021		
EM006-06	06/09/2021		
SA047-112	16/11/2021		
EM004-04	21/01/2022		
Conducted Distu			
Terminal			
EM031-04	07/01/2022		
EM084-02	21/07/2021		
EM041-01	05/01/2022		
EM041-02	05/01/2022		
SA047-111	16/11/2021		
EM004-03	21/01/2022		
Click (1)			

Detail of the equipment calibration due date:

MHz)	
EM030-04	10/04/2021
EM031-02	16/10/2021
EM011-04	18/06/2021
EM031-02-01	12/04/2021
SA047-118	21/07/2021
EM045-01-01	N/A
Radiated Disturb	ance (30 MHz-1
GHz)	•
EM030-04	10/04/2021
EM031-02	16/10/2021
EM033-01	18/09/2021
EM031-02-01	12/04/2021
EM036-01	21/07/2021
SA047-118	21/07/2021
EM045-01-01	N/A
Radiated Disturb	ance (1-18 GHz)
EM030-04	10/04/2021
EM031-02	16/10/2021
EM031-03	06/09/2021
EM033-02	18/06/2021
EM033-02-02	12/04/2021
EM022-03	10/05/2021
SA047-118	21/07/2021
ENACAE 01 01	NI 7 A

Cal. Due date

(DD-MM-YYYY)

19/07/2021 15/11/2021 15/11/2021 06/09/2021 20/07/2021 16/11/2021 21/01/2022 gnetic

Equipment No.

Method) EM080-05 EM003-02

EM003-03

EM003-01-05 EM003-02-01 EM032-02-01 SA047-112 EM004-04

MHz) EM030-04 EM031-02 EM011-04

Radiated Disturbance (CDN

 EM004-04
 21/01/2022

 Radiated electromagnetic
 disturbances (9 kHz-30 MHz)

 EM031-04
 07/01/2022

 EM061-04
 7/03/2022

 SA047-111
 16/11/2021

 EM004-03
 21/01/2022

 Radiated Disturbance (9 kHz-30 MHz)

Version: 02-April-2020

TEST REPORT

5. EMI TEST

5.1 Conducted Disturbance Voltage at mains ports

Test Result: Pass

5.1.1 Block Diagram of Test Setup

5.1.2 Test Setup and Procedure

The EUT was set to achieve the maximum emission level. The mains terminal disturbance voltage was measured with the EUT in a shielded room. The EUT was connected to AC power source through an Artificial Mains Network which provides a 50 Ω linear impedance Artificial hand is used if appropriate (for handheld apparatus). The load/control terminal disturbance voltage was measured with passive voltage probe if appropriate.

The table-top EUT was placed on a 0.8m high non-metallic table above earthed ground plane(Ground Reference Plane). And for floor standing EUT, was placed on a 0.1m high non-metallic supported on GRP. The EUT keeps a distance of at least 0.8m from any other of the metallic surface. The Artificial Mains Network is situated at a distance of 0.8m from the EUT. During the test, mains lead of EUT excess 0.8m was folded back and forth parallel to the lead so as to form a horizontal bundle with a length between 0.3m and 0.4m.

The bandwidth of test receiver was set at 9 kHz. The frequency range from 150 kHz to 30MHz was checked.

TEST REPORT

5.1.3 Limit

Frequency range MHz	AC mains terminals dB (uV)		
IVITIE	Quasi-peak	Average	
0.15 to 0.5	66 to 56*	56 to 46*	
0.5 to 5	56	46	
5 to 30	60	50	
Note 1: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.			

Note 2: The lower limit is applicable at the transition frequency.

TEST REPORT

5.1.4 Test Data and curve

At mains terminal: Model: GK-CD12240 #1 heating zone Tested Wire: Live)2	Onera	tion Mode: heating
8		Орега	
dBμV 100	1 MHz		10 MHz
-90			
1 PK			
MAXH			
2 AV			
MAXH 70			TDS
FSC1 5QP			
-60			
FSC1 5AV			
50			
40			6DB AC
150 kHz			30 MHz
EDI'	I PEAK LIST (Final FCC150P	Measurement Resul	ts)
Trace2:	FCC15AV		
Trace3:			
TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT dB
1 Quasi Peak	186 kHz	41.52 L1	-22.69
2 Average	186 kHz	33.81 L1	-20.40
1 Quasi Peak	370 kHz	40.79 L1	-17.70
2 Average	370 kHz	36.80 L1	-11.69
2 Average	434 kHz	29.52 L1	-17.64
1 Quasi Peak	734 kHz	29.88 L1	-26.11
2 Average	986 kHz	27.05 L1	-18.94
2 Average	1.294 MHz	27.30 L1	-18.69
1 Quasi Peak	1.694 MHz	37.64 L1	-18.35
2 Average	2.462 MHz	29.92 L1	-16.08
_	2.754 MHz	33.28 L1	-22.71
1 Quasi Peak	3.95 MHz	29.86 L1	-26.13

- 1. Corr. (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Level (dBµV) = Corr. (dB) + Read Level (dBµV)
- 3. Delta Limit (dB) = Level (dB μ V)-Limit (dB μ V)

TEST REPORT

- 1. Corr. (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Level (dB μ V) = Corr. (dB) + Read Level (dB μ V)
- 3. Delta Limit (dB) = Level (dBµV)-Limit (dBµV)

TEST REPORT

- 1. Corr. (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Level (dBµV) = Corr. (dB) + Read Level (dBµV)
- 3. Delta Limit (dB) = Level (dB μ V)-Limit (dB μ V)

TEST REPORT

- 1. Corr. (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Level $(dB\mu V) = Corr. (dB) + Read Level (dB\mu V)$
- 3. Delta Limit (dB) = Level (dBµV)-Limit (dBµV)

TEST REPORT

- 1. Corr. (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Level (dBµV) = Corr. (dB) + Read Level (dBµV)
- 3. Delta Limit (dB) = Level (dB μ V)-Limit (dB μ V)

TEST REPORT

- 1. Corr. (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Level (dBµV) = Corr. (dB) + Read Level (dBµV)
- 3. Delta Limit (dB) = Level (dBµV)-Limit (dBµV)

TEST REPORT

- 1. Corr. (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Level (dBµV) = Corr. (dB) + Read Level (dBµV)
- 3. Delta Limit (dB) = Level (dBµV)-Limit (dBµV)

TEST REPORT

- 1. Corr. (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Level (dB μ V) = Corr. (dB) + Read Level (dB μ V)
- 3. Delta Limit (dB) = Level (dB μ V)-Limit (dB μ V)

TEST REPORT

- 1. Corr. (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Level (dBµV) = Corr. (dB) + Read Level (dBµV)
- 3. Delta Limit (dB) = Level (dB μ V)-Limit (dB μ V)

TEST REPORT

- 1. Corr. (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Level (dBµV) = Corr. (dB) + Read Level (dBµV)
- 3. Delta Limit (dB) = Level (dB μ V)-Limit (dB μ V)

TEST REPORT

- 1. Corr. (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Level $(dB\mu V) = Corr. (dB) + Read Level (dB\mu V)$
- 3. Delta Limit (dB) = Level (dBµV)-Limit (dBµV)

TEST REPORT

- 1. Corr. (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Level $(dB\mu V) = Corr. (dB) + Read Level (dB\mu V)$
- 3. Delta Limit (dB) = Level (dB μ V)-Limit (dB μ V)

TEST REPORT

- 1. Corr. (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Level (dBµV) = Corr. (dB) + Read Level (dBµV)
- 3. Delta Limit (dB) = Level (dB μ V)-Limit (dB μ V)

TEST REPORT

- 1. Corr. (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Level $(dB\mu V) = Corr. (dB) + Read Level (dB\mu V)$
- 3. Delta Limit (dB) = Level (dB μ V)-Limit (dB μ V)

TEST REPORT

- 1. Corr. (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Level (dB μ V) = Corr. (dB) + Read Level (dB μ V)
- 3. Delta Limit (dB) = Level (dB μ V)-Limit (dB μ V)

TEST REPORT

- 1. Corr. (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Level (dBµV) = Corr. (dB) + Read Level (dBµV)
- 3. Delta Limit (dB) = Level (dBµV)-Limit (dBµV)

TEST REPORT

- 1. Corr. (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Level $(dB\mu V) = Corr. (dB) + Read Level (dB\mu V)$
- 3. Delta Limit (dB) = Level (dBµV)-Limit (dBµV)

TEST REPORT

- 1. Corr. (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Level (dB μ V) = Corr. (dB) + Read Level (dB μ V)
- 3. Delta Limit (dB) = Level (dB μ V)-Limit (dB μ V)

TEST REPORT

- 1. Corr. (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Level (dB μ V) = Corr. (dB) + Read Level (dB μ V)
- 3. Delta Limit (dB) = Level (dBµV)-Limit (dBµV)

TEST REPORT

- 1. Corr. (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Level (dBµV) = Corr. (dB) + Read Level (dBµV)
- 3. Delta Limit (dB) = Level (dBµV)-Limit (dBµV)

TEST REPORT

ed Wire: Live	· · · · · · ·	Opera	ation Mode: heatir
100	1 MHz		10 MHz
-90			
-80			
00			
-70			
F6C15QP			
60			
FSC15AV			
-50			
		my minum	
-40			
A Start P		Mik. a. hli . man Aki na	
JAN MMWW		/ / / / / / / / / / / / / / / / / / /	
/ V 1	10 July 10 Jul		
N	NA NAMANA NA	V	
20 N N M			
²⁰ ⁷ ¹ ¹			\ 🔨 ulli
0			
150 kHz			30 MH2
ED	IT PEAK LIST (Fina	l Measurement Resu	lts)
ace1:	FCC15QP		
ace2:	FCC15AV		
ace3:			
TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT dE
Quasi Peak	434 kHz	33.62 L1	-23.55
Average	1.978 MHz	28.88 L1	-17.11
Quasi Peak	2.078 MHz	39.09 L1	-16.90
Average	2.662 MHz	33.38 L1	-12.61
	3.958 MHz	43.77 L1	-12.22
Quasi Peak			
-	6.378 MHz	41.78 L1	-18.21
Quasi Peak	6.378 MHz 6.418 MHz	41.78 L1 34.36 L1	-18.21 -15.63
Quasi Peak Quasi Peak			

- 1. Corr. (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Level (dB μ V) = Corr. (dB) + Read Level (dB μ V)
- 3. Delta Limit (dB) = Level (dB μ V)-Limit (dB μ V)

TEST REPORT

- 1. Corr. (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Level (dBµV) = Corr. (dB) + Read Level (dBµV)
- 3. Delta Limit (dB) = Level (dB μ V)-Limit (dB μ V)

TEST REPORT

5.2 Radiated Emission 30 MHz -1000 MHz

Test Result: Pass

5.2.1 Block Diagram of Test Setup

5.2.2 Test Setup and Procedure

The measurement was applied in a semi-anechoic chamber. The EUT and simulators were placed on a 0.8 m high foamed table above the horizontal metal ground plane. The turn table rotated 360 degrees to determine the position of the maximum emission level. The EUT was set 3 meters away from the receiving antenna which was mounted on an antenna mask. The antenna moved up and down between from 1 meter to 4 meters to find out the maximum emission level.

Broadband antenna was used as receiving antenna. Both horizontal and vertical polarization of the antenna was set on measurement. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4 requirement during radiated test. The bandwidth setting on R&S Test Receiver was 120 kHz.

For an unintentional radiator, including a digital device, the spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a radiated emission limit is specified, up to the frequency shown in the following table:

Highest frequency generated or used in the	Upper Frequency of
device or on which the device operates or	Radiated Measurement

TEST REPORT

tunes (MHz)		
Below 1.705 MHz	30MHz	
1.705 MHz – 108 MHz	1 GHz	
108 MHz – 500 MHz	2 GHz	
500 MHz – 1 GHz	5 GHz	
Above 1 GHz	5th harmonic of the highest frequency	
	or 40 GHz, whichever is lower.	
At transitional frequencies the lower limit applies.		

Remark: Radiated Emission was performed from 30 MHz to 1 GHz.

5.2.3 Limit

Class B limit at 3m test distance:

Frequency range	Quasi-peak limits	
MHz	dΒ (μV/m)	
30 to 88	40	
88 to 216	43.5	
216 to 960	46	
960 to 1000	54	
At transitional frequencies the lower limit applies.		

TEST REPORT

5.2.4 Test Data and Curve

All emission levels are more than 6 dB below the limit.

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak $(dB\mu V/m) = Corr. (dB) + Read Level (dB\mu V)$
- 3. Margin (dB) = Limit QPK (dB μ V/m) –Quasi Peak (dB μ V/m)

All emission levels are more than 6 dB below the limit.

Frequency (MHz)	Quasi Peak (dBµV/ m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBµV/m)
112.560000	29.3	120.000	V	11.9	14.2	43.5
161.000000	27.0	120.000	V	10.3	16.5	43.5
168.960000	26.3	120.000	V	10.7	17.2	43.5

Remark:

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak $(dB\mu V/m) = Corr. (dB) + Read Level (dB\mu V)$
- 3. Margin (dB) = Limit QPK (dBµV/m) –Quasi Peak (dBµV/m)

All emission levels are more than 6 dB below the limit.

TEST REPORT

All emission levels are more than 6 dB below the limit.

TEST REPORT

All emission levels are more than 6 dB below the limit.

TEST REPORT

All emission levels are more than 6 dB below the limit.

TEST REPORT

All emission levels are more than 6 dB below the limit.

All emission levels are more than 6 dB below the limit.

TEST REPORT

All emission levels are more than 6 dB below the limit.

TEST REPORT

All emission levels are more than 6 dB below the limit.

TEST REPORT

All emission levels are more than 6 dB below the limit.

All emission levels are more than 6 dB below the limit.

5.3 Radiated Emission above 1 GHz

Test Result: Not Applicable Remark:

The highest internal source of the EUT is not more than 108 MHz, so the measurement above 1000 MHz is not applicable.

TEST REPORT

6. APPENDIX I - PHOTOS OF TEST SETUP

TEST REPORT

7. APPENDIX II – PHOTOS OF EUT

TEST REPORT

